Advertisement

Journal of Materials Science

, Volume 41, Issue 18, pp 6146–6149 | Cite as

Synthesis of (Na0.5Bi0.5)TiO3 and (Na0.5Bi0.5)0.92Ba0.08TiO3 powders by a citrate method

  • Qing Xu
  • Shutao Chen
  • Wen Chen
  • Duanping Huang
  • Jing Zhou
  • Huajun Sun
  • Yueming Li
Letter

At present, lead zirconate titanate (PZT) based ceramics are most widely applied piezoelectric materials because of their superior electrical properties. However, the evaporation of toxic lead during the fabrication of the ceramics causes an environmental problem. Therefore, there is an increasing interest of investigating lead-free piezoelectric materials to replace PZT based piezoelectric ceramics. Sodium bismuth titanate, (Na0.5Bi0.5)TiO3 (NBT), is a kind of perovskite-type ferroelectric with a relatively large remnant polarization (P= 38 μC/cm2) at room temperature and a relatively high Curie temperature (T= 320 °C) [1]. For its strong ferroelectricity at room temperature, NBT has been considered to be a promising candidate material for lead-free piezoelectric ceramics. However, it is difficult to pole NBT ceramic due to its large coercive field (E= 73 kV/cm), making it unsuccessful in obtaining desired piezoelectric properties. To solve this poling problem, various NBT...

Keywords

Differential Scanning Calorimetry Precursor Solution Piezoelectric Property Calcine Powder Tetrabutyl Titanate 

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Grant No. 5027044), the Natural Science Foundation of Hubei Province (Grant No. 2002AB076) and Nippon Sheet Glass Foundation for Materials Science and Engineering.

References

  1. 1.
    Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) Sov Phys–Solid State (Engl Transl) 2:2651Google Scholar
  2. 2.
    Takenaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys 30:2236CrossRefGoogle Scholar
  3. 3.
    Ichinose N, Udagawa K (1995) Ferroelectrics 169:317CrossRefGoogle Scholar
  4. 4.
    Herabut A, Safari A, (1997) J Am Ceram Soc 80:2954CrossRefGoogle Scholar
  5. 5.
    Takenaka T (1999) Ferroelectrics 230:87CrossRefGoogle Scholar
  6. 6.
    Chu BJ, Chen DR, Li GR, Yin QR (2002) J Euro Ceram Soc 22:2115CrossRefGoogle Scholar
  7. 7.
    Wang XX, Chan HLW, Choy CL (2003) Solid State Commun 125:395CrossRefGoogle Scholar
  8. 8.
    Park SE, Chung SJ, Kim IT, Hong KS (1994) J Am Ceram Soc 77:2641CrossRefGoogle Scholar
  9. 9.
    Park SE, Chung SJ, Kim IT (1996) J Am Ceram Soc 79:1290CrossRefGoogle Scholar
  10. 10.
    Park SE, Chung SJ (1996) J Appl Phys 79:383CrossRefGoogle Scholar
  11. 11.
    Said S, Mercurio JP (2001) J Euro Ceram Soc 21:1333CrossRefGoogle Scholar
  12. 12.
    Van Hal HAM, Groen WA, Maassen S, Keur WC (2001) J Euro Ceram Soc 21:1689CrossRefGoogle Scholar
  13. 13.
    Zhao ML, Wang CL, Zhong WL, Wang JF, Chen HC (2003) Acta Phys Sin 52:229Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Qing Xu
    • 1
  • Shutao Chen
    • 1
  • Wen Chen
    • 1
  • Duanping Huang
    • 1
  • Jing Zhou
    • 1
  • Huajun Sun
    • 1
  • Yueming Li
    • 1
  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations