Journal of Materials Science

, Volume 41, Issue 18, pp 6130–6133 | Cite as

Specific heat of the Ba0.7Sr0.3Ti1−yZryO (y = 0, 0.03, 0.05, 0.1) ferroelectric ceramics obtained by the temperature relaxation method

  • S. García
  • E. Marín
  • O. Delgado-Vasallo
  • J. Portelles
  • J. M. SiqueirosEmail author
  • E. Martínez
  • J. Heiras

In the last few years great interest has developed around Ba1−xSrxTiO3 (BST) or BST-based materials due to their great potential for technological applications such as integrated capacitors, ferroelectric memory and many others [1, 2, 3]. Thermal properties of materials used in the design and construction of electronic devices must be taken into account since heat will be unavoidably generated in a working electronic circuit. The behavior of the devices as their temperature change and their ability to store and dissipate heat will affect their performance and lifetime therefore their thermal properties cannot be neglected. Despite the extended use of the BST ceramic system, knowledge of the thermal properties is still scarce. For this reason a study of the heat capacity (Cp) and specific heat (cp) of Ba0.7Sr0.3Ti1−yZryO3 (y = 0, 0.03, 0.05 0.1) ceramic samples obtained by the Temperature Relaxation Method (TRM) [4] is presented.

There are several methods reported in the literature to...


Specific Heat Capacity Black Body Radiation SrCO3 Study Concentration Range Initial Equilibrium State 



This work was partially supported by CoNaCyT (Proj.No.33586E) and DGAPA-UNAM (Proj. No. IN104000).


  1. 1.
    Zhang L, Zhong WL, Wamg G (1998) Solid State Commun 10:761Google Scholar
  2. 2.
    Zafar S, Chu P, Remmel T, Jones RE, White BE, Gentile D, Jiang B, Melnick B, Taylor D, Zucher P, Gillespie S (1998) Mater Res Soc Symp Proc 43:15Google Scholar
  3. 3.
    Reisinger H, Wendt H, Beitel G, Frisch E (1998) Symp on VLSI technology. Digest of Technical Papers 58Google Scholar
  4. 4.
    Hatta L (1979) Sci Instrum 50:292CrossRefGoogle Scholar
  5. 5.
    Kraftmakher Y (2002) Phys Rev 356:1Google Scholar
  6. 6.
    Mansanares AM, Bento AC, Vargas H, Leite NF, Miranda LCM (1990) Phys Rev B 42:4477CrossRefGoogle Scholar
  7. 7.
    Pichardo JL, Marin E, Alvarado-Gil JJ, Mendoza-Alvares JG, Cruz-Orea A, Vargas H, Delgadillo I, Torres-Delgado G (1997) J Appl Phys A 65:69CrossRefGoogle Scholar
  8. 8.
    Juárez GG, Angel OZ, Gil JJA, Vargas H, Dastore HDO, Barone JS, Velez MH, Baños L (1996) J Chem Soc Faraday Trans 92:2651CrossRefGoogle Scholar
  9. 9.
    Alexandre J, Saboya F, Marques BC, Ribeiro MLP, Salles C, Da Silva MG, Sthel MS, Auler LT, Vargas H (1999) Analyst 124:1209CrossRefGoogle Scholar
  10. 10.
    Balderas-López JA, Tomas SA, Vargas H, Olalde-Portugal V, Baquero R, Limón JMY, Alvarado Gil JJ, Hernández JF, Falconi C, Silva MD, Miranda LCM (1996) Forest Prod J 46:84Google Scholar
  11. 11.
    Rodríguez ME, Yánez JM, Orea AC, Gil JJA, Angel OZ, Sinencio FS, Vargas H, De Dios Figueroa J, Bustos FM, De La Luz Martinez-Montes J, Hernández JG, Carlos De Moura L (1995) Lebensmittel Untersuchung Und-Forschung. Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  12. 12.
    Krupska A, Krupski M, Konarski J (2001) Eur J Phys 22:133CrossRefGoogle Scholar
  13. 13.
    Ring AT (1998) Fundamentals of ceramic powder processing and synthesis. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • S. García
    • 1
  • E. Marín
    • 1
  • O. Delgado-Vasallo
    • 1
  • J. Portelles
    • 1
  • J. M. Siqueiros
    • 2
    Email author
  • E. Martínez
    • 2
  • J. Heiras
    • 2
  1. 1.Facultad de FísicaUniversidad de la HabanaLa HabanaCuba
  2. 2.Centro de Ciencias de la Materia CondensadaUNAMEnsendada. B. CMéxico

Personalised recommendations