Effects of calcination conditions on phase and morphology evolution of lead zirconate powders synthesized by solid-state reaction
- 97 Downloads
- 1 Citations
Abstract
Lead zirconate (PbZrO3) powder has been synthesized by a solid-state reaction via a rapid vibro-milling technique. The effects of calcination temperature, dwell time and heating/cooling rates on phase formation, morphology, particle size and chemical composition of the powders have been investigated by TG-DTA, XRD, SEM and EDX techniques. The results indicated that at calcination temperature lower than 800 °C minor phases of unreacted PbO and ZrO2 were found to form together with the perovskite PbZrO3 phase. However, single-phase PbZrO3 powders were successfully obtained at calcination conditions of 800 °C for 3 h or 850 °C for 1 h, with heating/cooling rates of 20 °C/min. Higher temperatures and longer dwell times clearly favored the particle growth and formation of large and hard agglomerates.
Keywords
Calcination Dwell Time Calcination Temperature Barium Titanate Lead ZirconateNotes
Acknowledgements
We thank the Thailand Research Fund (TRF), the Comission on Higher Education (CHE), Graduate School, Faculty of Science, and Center of Excellence in Functional Nanomaterials, Chiang Mai University for all supports.
References
- 1.Jaffe B, Cook WJ, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
- 2.Jona F, Shirane G (1993) Ferroelectric crystals. Dover Publications, New YorkGoogle Scholar
- 3.Sawaguchi E, Maniwa H,Hoshino S (1951) Phys Rev 83:1078CrossRefGoogle Scholar
- 4.Shirane G, Sawaguchi E, Takagi Y (1951) Phys Rev 84:476CrossRefGoogle Scholar
- 5.Sawaguchi E, Kittaka K (1952) J Phys Soc Jpn 7:336CrossRefGoogle Scholar
- 6.Tennery VJ (1966) J Am Ceram Soc 49:483CrossRefGoogle Scholar
- 7.Scott BA, Burns G (1972) J Am Ceram Soc 55:331CrossRefGoogle Scholar
- 8.Shirane G, Hoshino S (1954) Acta Crystallogr 7:203CrossRefGoogle Scholar
- 9.Pokharel BP, Pandey D (1999) J Appl Phys 86:3327CrossRefGoogle Scholar
- 10.Bongarn T, Rujijanagul G, Milne SJ (2005) Mater Lett 59:1200CrossRefGoogle Scholar
- 11.Whatmore RW (1976) Ph.D. Thesis, Genville and Cauis College, CambridgeGoogle Scholar
- 12.Singh K (1989) Ferroelectrics 94:433CrossRefGoogle Scholar
- 13.Haertling GH (1999) J Am Ceram Soc 82:797CrossRefGoogle Scholar
- 14.Moulson AJ, Herbert JM (2003) Electroceramics, 2nd edn. Wiley, New YorkGoogle Scholar
- 15.Uchino K (1998) Piezoelectrics and ultrasonic applications. Kluwer, DeventerGoogle Scholar
- 16.Kakegawa K, Mohri J, Takahashi T, Yamamura H, Shirasaki S (1977) Solid State Commun 24:769CrossRefGoogle Scholar
- 17.Kingon AI, Clark JB (1983) J Am Ceram Soc 66:253CrossRefGoogle Scholar
- 18.Matsuo Y, Sasaki H (1965) J Am Ceram Soc 48:289CrossRefGoogle Scholar
- 19.Babushkin O, Lindback T, Lue JC, Leblais JYM (1996) J Eur Ceram Soc 16:1293CrossRefGoogle Scholar
- 20.Hanky DL, Biggers JV (1951) J Am Ceram Soc 12:172Google Scholar
- 21.Garg A, Agrawal DC (1999) Mat Sci Eng B 56:46CrossRefGoogle Scholar
- 22.Tipakontitikul R, Ananta S (2004) Mater Lett 58:449CrossRefGoogle Scholar
- 23.Reaney IM, Glazounov A, Chu F, Bell A, Setter N (1997) Brit Ceram Trans 96:217Google Scholar
- 24.Oren EE, Taspinar E, Tas AC (1997) J Am Ceram Soc 80:2714CrossRefGoogle Scholar
- 25.Ibrahim DM, Hennicke HW (1981) Trans J Br Ceram Soc 80:18Google Scholar
- 26.Deshpande AS, Khollam YB, Patil AJ, Deshpande SB, Potdar HS, Date SK (2001) Mater Lett 51:161CrossRefGoogle Scholar
- 27.Rao YS, Sunandana CS (1992) J Mater Sci Lett 11:595CrossRefGoogle Scholar
- 28.Choi JY, Kim CH, Kim DK (1998) J Am Ceram Soc 81:1353CrossRefGoogle Scholar
- 29.Fang J, Wang J, Ng SC, Gan LM, Quek CH, Chew CH (1998) Mater Lett 36:179CrossRefGoogle Scholar
- 30.Puchmark C, Rujijanagul G, Jiansirisomboon S, Tunkasiri T (2004) Ferroelectric Lett 31:1Google Scholar
- 31.Fang J, Wang J, Ng SC, Gan LM, Chew CH (1998) Ceram Inter 24:507CrossRefGoogle Scholar
- 32.Lanagan MT, Kim JH, Jang S, Newnham RE (1988) J Am Ceram Soc 71:311CrossRefGoogle Scholar
- 33.Ananta S, Thomas NW (1999) J Eur Ceram Soc 19:155CrossRefGoogle Scholar
- 34.Klug H, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley, New YorkGoogle Scholar
- 35.Aoyama T, Kurata N, Hirota K, Yamaguchi O (1995) J Am Ceram Soc 78:3163CrossRefGoogle Scholar
- 36.Fushimi S, Ikeda T (1967) J Am Ceram Soc 50:129CrossRefGoogle Scholar
- 37.Lee WE, Rainforth WM (1994) Ceramic microstructures: Property control by processing. Chapman & Hall, LondonGoogle Scholar
- 38.Deyneka TG, Vouk EA, Ishchuk VM, Ramakaeva RF, Volkova GK, Konstantinova TE (2004) Funct Mater 11:44Google Scholar
- 39.Udomporn A, Ananta S (2004) Mater Lett 58:1154CrossRefGoogle Scholar
- 40.JCPDS-ICDD Card No. 77–1971 (2002) International Centre for Diffraction Data, Newtown Square, PAGoogle Scholar
- 41.JCPDS-ICDD Card No. 37–1484 (2002) International Centre for Diffraction Data, Newtown Square, PAGoogle Scholar
- 42.JCPDS-ICDD Card No. 35–739 (2002) International Centre for Diffraction Data, Newtown Square, PA, 2002Google Scholar
- 43.Tani T, Li JF, Viehland D, Payne DA (1994) J Appl Phys 75:3017CrossRefGoogle Scholar
- 44.Ananta S, Brydson R, Thomas NW (2000) J Eur Ceram Soc 20:2315CrossRefGoogle Scholar
- 45.Ryu J, Choi JJ, Kim HE (2001) J Am Ceram Soc 84:902CrossRefGoogle Scholar
- 46.Baumgartner CE (1988) J Am Ceram Soc 71:C-350CrossRefGoogle Scholar
- 47.Udomporn A, Pengpat K, Ananta S (2004) J Eur Ceram Soc 24:185CrossRefGoogle Scholar
- 48.Ananta S (2004) Mater Lett 58:2530CrossRefGoogle Scholar
- 49.Kim HK (1993) Thesis MS, Seoul National University, Seoul, KoreaGoogle Scholar