Microstructural characterisation by X-ray scattering of perovskite-type La0.8Sr0.2MnO3±δ thin films prepared by a dip-coating process
- 121 Downloads
- 1 Citations
Abstract
The La0.8Sr0.2MnO3 (LSM) cathode materials are widely used in solid oxide fuel cells (SOFCs) as electronic conductors. In such materials, the reduction of oxygen is located at the triple contact boundaries: air/cathode LSM/electrolyte which is generally Yttria Stabilised Zirconia (YSZ). In order to improve the chemical reactions at these air/cathode LSM/electrolyte interfaces, the triple phase boundary length has to be optimised. In this aim, we have first synthesised the La0.8Sr0.2MnO3 phase by a sol–gel route and, second, LSM thin films have been deposited on various polished substrates by using a dip-coating process. The structure and microstructure of the resulting LSM thin layers have been investigated by using well suited complementary techniques such as X-ray reflectometry, grazing incidence small angle X-ray scattering, X-ray diffraction and scanning electronic microscopy. The structural and microstructural parameters of LSM thin films have been managed and studied as a function of synthesis parameters such as initial metallic salt concentration, time and temperature of annealing. The higher the metallic salt concentration, the higher the thickness of the film, the smaller the film density. The as-prepared layers are amorphous and the single crystallised perovskite form is obtained for low temperature heat treatments. Therefore, the annealed coatings are constituted by randomly oriented LSM nanocrystals, which organise in a more or less dense close-packed microstructure according to the initial metallic salt concentration.
Keywords
Yttrium Stabilise Zirconia HMTA Withdrawal Speed Triple Phase Boundary SOFC ApplicationNotes
Acknowledgements
The authors acknowledge ADEME and the French Fuel Cell Network for their financial supports.
References
- 1.Nguyen MQ (1993) J Am Ceram Soc 76:563CrossRefGoogle Scholar
- 2.Stevens P, Novel-Cattin F, Hammou A, Lamy C, Cassir M (2000) Techniques de l’ingénieur D5:3340Google Scholar
- 3.Van Roosmalen JAM, Huijsmans JPP, Plomb L (1993) Solid State Ionics 66:279CrossRefGoogle Scholar
- 4.Kamata H, Hosuka A, Mizusaki J, Tagawa H (1998) Solid State Ionics 106:237CrossRefGoogle Scholar
- 5.Bell RJ, Millar GJ, Drennan J (2002) Solid State Ionics 131:211CrossRefGoogle Scholar
- 6.Van Roosmalen JAM, Huijsmans JPP, Cordfunke EHP (1991) In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceeding of 2nd international symposium on solid oxide fuel cells. Luxembourg, p 507Google Scholar
- 7.Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Mater Lett 10Google Scholar
- 8.Chakraborty A, Sujatha Devi P, Roy S, Maiti HS (1994) J Mater Res 9:986CrossRefGoogle Scholar
- 9.Pechini P (1967) Patent, 3.330.697 July 11Google Scholar
- 10.Gaudon M (2002) Ph.D. Thesis, ToulouseGoogle Scholar
- 11.Lenormand P (2001) Ph.D. Thesis, LimogesGoogle Scholar
- 12.Lenormand P, Lecomte A, Dauger A, Mary C, Guinebretière R (2000) J Phys IV 10:255Google Scholar
- 13.Gaudon M, Laberty-Robert C, Ansart F, Stevens P, Rousset A (2002) Solid State Sci 4:125CrossRefGoogle Scholar
- 14.Gaudon M, Laberty-Robert C, Ansart F, Stevens P, Rousset A (2002) J New Mat Electrochem Syst 5:57Google Scholar
- 15.Brinker JF, Scherrer GW (1990) Sol–gel science. Academic Press IncGoogle Scholar
- 16.Croce P, Névot L, Pardo B (1972) Nouv Rev D’Opt Appl 3:37CrossRefGoogle Scholar
- 17.Naudon A, Chihab J, Goudeau P, Mimault J (1989) J Appl Cryst 22:460CrossRefGoogle Scholar
- 18.Parratt LG (1954) Phys Rev 95:359CrossRefGoogle Scholar
- 19.Névot L, Pardo B, Corno J (1988) Rev Phys Appl 23:1675CrossRefGoogle Scholar
- 20.Naudon A, Thiaudière D (1997) J Appl Cryst 30:822CrossRefGoogle Scholar
- 21.Levine JR, Cohen JB, Chung YW, Georgopoulos P (1989) J Appl Cryst 22:528CrossRefGoogle Scholar
- 22.Naudon A, Babonneau D (1997) Z Metallkd 88:596Google Scholar
- 23.Babonneau D, Naudon A, Cabioc’h T, Lyon O (2000) J Appl Cryst 33:437CrossRefGoogle Scholar
- 24.Kutsch B, Lyon O, Schmitt M, Mennig M, Schmidt H (1997) J Appl Cryst 30:948CrossRefGoogle Scholar
- 25.Masson O, Guinebretière R, Dauger A (1996) J Appl Cryst 29:540CrossRefGoogle Scholar
- 26.Kiessig H (1931) Ann Phys 10:769CrossRefGoogle Scholar
- 27.Henke BL, Gullikson EM, Davis JC (1993) Atomic Data Nuclear Data 54:181CrossRefGoogle Scholar
- 28.Lenormand P, Laberty-Robert C, Ansart F (2002) In: Proceedings of the France-Deutschland fuel cell conference, p 248Google Scholar
- 29.Guinier A, Fournet G (1955) Small-angle scattering of X-rays. John Wiley & Sons, Inc., NewYorkGoogle Scholar
- 30.Glatter O, Kratky O (eds) (1982) Small-angle X-ray Scattering. Academic Press, LondonGoogle Scholar
- 31.Levine JR, Cohen JB, Chung YW (1991) Surf Sci 248:215CrossRefGoogle Scholar
- 32.Yoneda Y (1963) Phys Rev 131:2010CrossRefGoogle Scholar
- 33.Babonneau D (1999) Ph.D. Thesis, PoitiersGoogle Scholar
- 34.Brinker CJ, Hurd AJ, Schunk PR, Frye GC, Ashley CS (1992) J Non Cryst Sol 147&148:424CrossRefGoogle Scholar
- 35.Lange FF (1996) Science 273:903CrossRefGoogle Scholar
- 36.Miller KT, Lange FF (1989) Mater Res Soc Symp Proc 155:191CrossRefGoogle Scholar
- 37.Rizzato AP, Santilli CV, Pulcinelli SH (1999) J Non-Cryst Solids 247:158CrossRefGoogle Scholar
- 38.Copel M, Carlier E, Gusev EP, Guha S, Bojarczuck N, Poppeller M (2001) Appl Phys Lett 78:2670CrossRefGoogle Scholar
- 39.Stemmer S, Chen Z, Keding R, Maria JP, Wicaksana D, Kingon AI (2002) J Appl Phys 92:82CrossRefGoogle Scholar
- 40.Busch BW, Pluchery O, Chabal YJ, Muller DA, Opila RL, Raynien Kwo J, Garfunkel E (2002) MRS Bull 27:206CrossRefGoogle Scholar
- 41.Holy V, Kubena J, Ohlidal I, Lischka K, Plotz W (1993) Phys Rev B 47:15896CrossRefGoogle Scholar
- 42.Jergel M, Holy V, Majkova E, Luby S, Senderak R (1997) J Appl Cryst 30:64CrossRefGoogle Scholar
- 43.Matsuoka H, Tanaka H, Hashimoto T, Ise N (1987) Phys Rev B 36:1754CrossRefGoogle Scholar
- 44.Lenormand P, Lecomte A, Babonneau D, Dauger A (2006) Thin Solids Films 495:224CrossRefGoogle Scholar
- 45.Boulle A (2002) Ph.D. Thesis, LimogesGoogle Scholar
- 46.Miller KT, Lange FF, Marshall DB (1990) J Mater Res 5:151CrossRefGoogle Scholar
- 47.Seifert A, Vojta A, Speck JS, Lange FF (1996) J Mater Res 11:1470CrossRefGoogle Scholar
- 48.Mary C, Guinebretière R, Trolliard G, Soulestin B, Villechaise P, Dauger A (1998) Thin Solids Films 336:156CrossRefGoogle Scholar
- 49.Guinebretière R, Bachelet R, Boulle A, Masson O, Lecomte A, Dauger A (2004) Mater Sci Eng B 109:42CrossRefGoogle Scholar
- 50.Kleitz M, Petitbon F (1996) Solid State Ionics 92:65CrossRefGoogle Scholar
- 51.Sasaki K, Wurthe JP, Godickemeier M, Mitterdorfer A, Gauckler LJ (1995) In: Dokiya M, Yamamoto O, Tagawa H, Singhal SC (eds) Proceedings of the 4th Int. Symp. On SOFC, Yokohama, Japan, p 625Google Scholar