Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7769–7774 | Cite as

Interfaces between Pb grains and Cu surfaces

  • Dominique Chatain
  • Daniel Galy
Article

Abstract

The interfaces between liquid or solid Pb islands and single- or poly-crystalline Cu substrates are investigated. EBSD (Electron backscattered diffraction) analyses show that when Pb is solidified from droplets, a cube-on-cube orientation relationship prevails between the Pb crystals and each Cu grain surface, whatever its surface orientation, even though the lattice parameter of Pb is 1.37 times larger than that of Cu. Scanning electron microscope (SEM) and atomic force microscope (AFM) analyses show that during annealing of Pb droplets, ridges develop at the droplet-substrate triple lines, indicating that the interfaces evolve towards equilibrium by diffusional processes. These features are discussed in comparison with experiments and calculations performed on Pb nanocrystals embedded in Al, another fcc solid with a lattice parameter smaller than that of Pb. It is proposed that the cube-on-cube orientation relationship results from the solidification of Pb along the {111} planes of the solid Cu/liquid Pb interface which have developed by diffusion during the process of equilibration of the interface shape.

Keywords

Atomic Force Microscope Orientation Relationship Scanning Electron Microscopy Picture Fiber Texture Scanning Auger Microscope 

Notes

Acknowledgements

The authors acknowledge Paul Wynblatt for helpful discussions.

References

  1. 1.
    Heyraud JC, Metois JJ, Bermond JM (1989) J Cryst Growth 98:355CrossRefGoogle Scholar
  2. 2.
    Chatain D, Métois JJ (1993) Surf Sci 291:1CrossRefGoogle Scholar
  3. 3.
    Rao G, Zhang D-B, Wynblatt P (1993) Acta Metall Mater 41:3331CrossRefGoogle Scholar
  4. 4.
    Gangopadhyay U, Wynblatt P (1994) Metall Trans 25A:607CrossRefGoogle Scholar
  5. 5.
    Chatain D, unpublished workGoogle Scholar
  6. 6.
    Saiz E, Cannon RM, Tomsia AP (2000) Acta Mater 48:4449CrossRefGoogle Scholar
  7. 7.
    Chatain D, Carter WC (2004) Nature Mater 13:843CrossRefGoogle Scholar
  8. 8.
    Moon J, Lowekamp J, Wynblatt P, Garoff S, Suter RM (2001) Surf Sci 448:73CrossRefGoogle Scholar
  9. 9.
    Monchoux JP, Chatain D, Wynblatt P (2006) Surf Sci 600:1265CrossRefGoogle Scholar
  10. 10.
    Delamare F, Rhead GE (1973) Surf Sci 35:172CrossRefGoogle Scholar
  11. 11.
    Wynblatt P, Chatain D, Ranguis A, to be publishedGoogle Scholar
  12. 12.
    Chatain D, Wynblatt P, Rohrer GS (2004) Scripta Mater 50:565CrossRefGoogle Scholar
  13. 13.
    Pouchou JL, in “l’analyse EBSD” (EDP Sciences, Les Ulis, France, 2004)Google Scholar
  14. 14.
    Ying F, Smith RW, Srolovitz DJ (1996) Appl Phys Lett 69:3007CrossRefGoogle Scholar
  15. 15.
    Dahmen U, Xiao S, Paciornik LS, Johnson E, Johansen A (1997) Phys Rev Lett 78:471CrossRefGoogle Scholar
  16. 16.
    Gabrisch H, Kjeldgaard L, Johnson E, Dahmen U (2001) Acta Mater 49:4259CrossRefGoogle Scholar
  17. 17.
    Shi Z, Wynblatt P, Srinivasan SG (2004) Acta Mater 52:2305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Centre de Recherche en Matière Condensée et Nanosciences – CNRS, Laboratoire Propre du CNRS associé aux Universités d’Aix-Marseille 2 et 3Marseille Cedex 9France
  2. 2.Synergie 4Evry CedexFrance

Personalised recommendations