Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7808–7813 | Cite as

Atom probe tomography characterization of solute segregation to dislocations and interfaces

  • M. K. Miller
Article

Abstract

The level and extent of solute segregation to individual dislocations and interfaces may be visualized and quantified by atom probe tomography. The large volume of analysis and high data acquisition rate of the local electrode atom probe (LEAP®) enables the solute distribution in the region of and along the core of dislocations to be estimated. Solute segregation at precipitate-matrix interfaces of precipitates as small as 2-nm diameter may be quantified. Examples are presented of solute segregation to dislocations and clustering/precipitation in a neutron irradiated Fe–Ni–P model alloy and the neutron irradiated beltline weld from the Midland reactor.

Keywords

Atom Probe Atom Probe Tomography Solute Segregation Transmission Electron Microscope Characterization High Number Density 

Notes

Acknowledgements

The author thanks K. F Russell, M.A. Sokolov and R. K. Nanstad of Oak Ridge National Laboratory for their assistance and Prof. G. R. Odette of the University of California- Santa Barbara for providing one of the neutron irradiated materials used in this paper. Research at the Oak Ridge National Laboratory SHaRE User Facility was sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC and by the Office of Nuclear Regulatory Research, U. S. Nuclear Regulatory Commission under inter-agency agreement DOE 1886-N695-3W with the U.S. Department of Energy.

References

  1. 1.
    Bowkett KM, Smith DA (1970) Field Ion Microscopy. North Holland, New York, NY, pp. 104–141–145–149Google Scholar
  2. 2.
    Miller MK, Horton JA (1987) J de Phys 48-C6:379Google Scholar
  3. 3.
    Jayaram R, Miller MK (1995) Scripta Metall 33:19CrossRefGoogle Scholar
  4. 4.
    Chang L, Barnard SJ, Smith GDW (1992) In: Krauss G, Repas PE (eds) Fundamentals of aging and tempering in Bainitic and Martensitic steel products, The Iron and Steel Society, Warrendale, PA, p 19Google Scholar
  5. 5.
    Miller MK, Cerezo A, Hetherington MG, Smith GDW (1996) Atom probe field ion microscopy. Oxford University Press, Oxford, UKGoogle Scholar
  6. 6.
    Miller MK (2004) TMS Lett 1:19Google Scholar
  7. 7.
    Miller MK (2006) Microsc Res Tech 69:359CrossRefGoogle Scholar
  8. 8.
    Smith DA, Birdseye PJ, Goringe MJ (1973) Phil Mag 27:1175CrossRefGoogle Scholar
  9. 9.
    Miller MK (2000) Atom probe tomography. Kluwer Academic/Plenum Press, New York, NYCrossRefGoogle Scholar
  10. 10.
    Blavette D, Cadel E, Fraczkiewicz A, Menand A (1999) Science 286:2317CrossRefGoogle Scholar
  11. 11.
    Wilde J, Cerezo A, Smith GDW (2000) Scripta Mater 43:39CrossRefGoogle Scholar
  12. 12.
    Miller MK, Russell KF, Kocik J, Keilova E (2000) J Nucl Mater 282:83CrossRefGoogle Scholar
  13. 13.
    Miller MK, Pareige P (2000) In: Lucas GE, Snead LL, Kirk MA, Elliman RG (eds) Material Research Society Symposium R: Microstructural processes in irradiated materials, November 27–29, 2000, vol. 650, Material Research Society, Warrendale, PA, p R6.1.1Google Scholar
  14. 14.
    Miller MK, Russell KF, Kocik J, Keilova E (2001) Micron 32:749CrossRefGoogle Scholar
  15. 15.
    Miller MK, Kenik EA, Russell KF, Heatherly L, Hoelzer DT, Maziasz PJ (2003) Mater Sci Eng A A353:140CrossRefGoogle Scholar
  16. 16.
    Pareige P, Radiquet B, Suvorov A, Kozodaev M, Krasikov E, Zabusov O, Massoud JP (2004) Surf Interface Anal 36:581CrossRefGoogle Scholar
  17. 17.
    Miller MK, Russell KF, Thompson GB (2005) Ultramicroscopy 102:287CrossRefGoogle Scholar
  18. 18.
    Sokolov MA, Nanstad RK (2006) Proceedings of ASME Pressure Vessels and Piping Division Conference, July 23–27, 2006, Vancouver, BC, Canada, in pressGoogle Scholar
  19. 19.
    Pereloma EV, Miller MK (2005) Microsc Microanal 11(suppl. 2):876Google Scholar
  20. 20.
    Hyde JM (1993) Computer modeling and analysis of microscale phase transformations, D. Phil Thesis, Oxford University, Oxford, UKGoogle Scholar
  21. 21.
    Hyde JM, English CA (2001) In: Lucas GE, Snead L, Kirk MA Jr, Elliman RG (eds) Proceedings of MRS 2000 Fall Meeting, Symposium R: Microstructural processes in irradiated materials, Boston, MA, November 27–30, 2000, vol. 650, Materials Research Society, Pittsburgh, PA, p R6.6.1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Microscopy, Microanalysis, Microscopy Group, Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations