Journal of Materials Science

, Volume 41, Issue 19, pp 6280–6289 | Cite as

Quasi-static and dynamic compressive behaviour of poly(methyl methacrylate) and polystyrene at temperatures from 293 K to 363 K

  • G. M. SwalloweEmail author
  • S. F. Lee


Flow stress, Young’s Modulus, energy and strain of fracture of poly(methyl methacrylate) (PMMA) and polystyrene (PS) were studied under compressive loading at strain rates of 10−4–10 s−1 and temperatures from 293 K to temperatures ∼20 K below Tg. It was found that the energy of fracture shows an increase in the quasi-static strain rate (10−4–10−3 s−1) region and becomes constant in the low strain rate (10−2–10 s−1) region, while the strain of fracture shows a slow decrease with rate over the strain rate range tested. The activation energies and volumes of PMMA and PS at yield stress, 20% and 30% strain were evaluated using Eyring’s theory of viscous flow. ΔG was found to be constant for all strain rates and strains for both PMMA and PS. The activation volume for both materials increased as a function of strain.


PMMA Flow Stress Dynamic Mechanical Thermal Analysis Fracture Strain Dynamic Mechanical Thermal Analyser 


  1. 1.
    Crawshaw J, Sferrazza M, Donald AM (2001) Plast Rubber Compos 30(2):68CrossRefGoogle Scholar
  2. 2.
    Arakawa K, Takahashi K (1997) Int J Fract 86(4):289CrossRefGoogle Scholar
  3. 3.
    Ward IM (1971) J Mater Sci 6:1397CrossRefGoogle Scholar
  4. 4.
    Bauwens JC (1970) J Polym Sci, Part A-2 8:893CrossRefGoogle Scholar
  5. 5.
    Bowden PB, Jukes JA (1973) J Mater Sci 7:52CrossRefGoogle Scholar
  6. 6.
    Hall IH (1968) J Appl Polym Sci 12:739CrossRefGoogle Scholar
  7. 7.
    Fleck NA, Stronge WJ, Liu JH (1990) Proc Roy Soc Lond A429:459–479CrossRefGoogle Scholar
  8. 8.
    Lerch V, Gary G, Herve P (2003) J Phys IV 110:159Google Scholar
  9. 9.
    Walley SM, Field JE, Pope PH, Safford NA (1989) Phil Trans Roy Soc Lond 328A:1CrossRefGoogle Scholar
  10. 10.
    Swallowe GM, Fernandez JO (2000) J Phys IV France 10:311CrossRefGoogle Scholar
  11. 11.
    Illers KH (1961) Z Elecktrochem 65:679Google Scholar
  12. 12.
    Illers KH, Jenckel E (1959) J Polym Sci 41:528CrossRefGoogle Scholar
  13. 13.
    Halsey G, White HJ Jr, Eyring H (1945) Textile Res J 15:295CrossRefGoogle Scholar
  14. 14.
    Ree T, Eyring H (1958) In: Eirich FR (ed) Rheology, vol II, Chapter III. Academic Press, New York Google Scholar
  15. 15.
    Roetling JA (1965) Polymer 6:311CrossRefGoogle Scholar
  16. 16.
    Bauwens-Crowet C, Bauwens JC, Homes G (1969) J Polym Sci A-2 7:735CrossRefGoogle Scholar
  17. 17.
    Bauwens-Crowet C (1973) J Mater Sci 8:968CrossRefGoogle Scholar
  18. 18.
    Zhu XX, Zhu GR (1992) Polymer 33:4968CrossRefGoogle Scholar
  19. 19.
    Nanzai Y (1990) Polym Eng Sci 30:96CrossRefGoogle Scholar
  20. 20.
    Bauwens-Crowet C, Ots J-M, Bauwens J-C (1974) J Mater Sci Lett 9:1197CrossRefGoogle Scholar
  21. 21.
    Argon AS (1973) Phil Mag 28:839CrossRefGoogle Scholar
  22. 22.
    Deutsch K, Hoff EAW, Reddish W (1954) J Polym Sci 13:565CrossRefGoogle Scholar
  23. 23.
    De Brouchere L, Offergeld G (1958) J Polym Sci 30:105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of PhysicsLoughborough UniversityLeicestershireUK

Personalised recommendations