Advertisement

Journal of Materials Science

, Volume 41, Issue 19, pp 6470–6475 | Cite as

Synthesis and biodegradability of starch-g-ethyl methacrylate/sodium acrylate/sodium silicate superabsorbing composite

  • Prafulla K. Sahoo
  • Pradeep K. Rana
Article

Abstract

A new superabsorbent composite polymer (SAP) has been prepared by graft copolymerization reaction using starch, ethyl methacrylate (EMA), benzoyl peroxide (BPO) as initiator and sodium acrylate as crosslinking agent. Further, it is observed that the composite doped with sodium silicate exhibits higher waterabsorbency as the silicate can well disperse in the water and enter into the network structure of the composite, thereby increasing the porosity of the composite. Sodium acrylate plays an important role as the crosslinker forming a network structure of the superabsorbent composite. The composite was characterized by IR, TGA, and XRD methods. The biodegradability of these valuable novel materials was evaluated for their industrial and commercial importance. The surface morphology was compared by scanning electron microscopy (SEM) before and after biodegradation of the composite.

Keywords

Starch Activate Sludge Sodium Silicate Benzoyl Peroxide Silicate Solution 

Notes

Acknowledgment

The authors gratefully acknowledge the financial assistance received from University Grants Commission, New Delhi, India [MR Project No.F.12-79/2001 (SR-II)].

References

  1. 1.
    Sakiyama T, Chu CH, Fujii T, Yano T (1993) J Appl Polym Sci 50:2021CrossRefGoogle Scholar
  2. 2.
    Shiga T, Hirose Y, Osada A, Kurauchi T (1993) J Appl Polym Sci 47:113CrossRefGoogle Scholar
  3. 3.
    Shogren RL, Doane WM, Garlotta D, Lawton JW, Willett JL (2003) Polym Degrad Stab 79:405CrossRefGoogle Scholar
  4. 4.
    Degli-Innocenti F, Bellia G, Tosin M, Kapanen A, Itavaara M (2001) Polym Degrad Stab 73:101CrossRefGoogle Scholar
  5. 5.
    Koenig MF, Huang SJ (1995) Polymer 36:1877CrossRefGoogle Scholar
  6. 6.
    Darwis D, Mitomo H, Yoshil F (1999) Polym Degrad Stab 65:279CrossRefGoogle Scholar
  7. 7.
    Oda Y, Asar H, Urakami T, Tonomura K (1995) J Ferment Bioeng 80:265CrossRefGoogle Scholar
  8. 8.
    Psomiadou E, Arvanitoyannis I, Biliaderis CG, Ogawa H, Kawasak N (1997) Carbohydr Polym 33:227CrossRefGoogle Scholar
  9. 9.
    Ishiaku US, Pang KW, Lee WS, Ishak ZAM (2002) Eur Polym J 38:393CrossRefGoogle Scholar
  10. 10.
    Abou-Zeid DM, Muller RJ, Deckwer WDL (2001) J Biotechnol 86:113CrossRefGoogle Scholar
  11. 11.
    Orhan Y, Buyugungor H (2000) Int Biodeter Biodegr 45:49CrossRefGoogle Scholar
  12. 12.
    Cao A, Okamura T, Ishiguro C, Nakayama K, Inoue Y, Masuda T (2002) Polymer 43:671CrossRefGoogle Scholar
  13. 13.
    Raju KM, Raju MP (2001) Polym Int 50(8):946CrossRefGoogle Scholar
  14. 14.
    Sahoo PK, Rana PK, Debsarkar NL, Sahoo A, Swain SK (2003) J Polym Sci Poly Chem 41:2696CrossRefGoogle Scholar
  15. 15.
    Federle TW, Barlaz MA, Pettigrew CA, Kerr KM, Kemper JJ, Nuck BA, Schechtman LA (2002) Biomacromolecules 3:813CrossRefGoogle Scholar
  16. 16.
    Chandra R, Rastugi R (1997) Polym Degrad Stab 56:185CrossRefGoogle Scholar
  17. 17.
    Venkatesh GM, Gilbert RD, Fornes RE (1985) Polymer 26:45CrossRefGoogle Scholar
  18. 18.
    Bikiaris D, Panayiotou C (1998) J Appl Polym Sci 70:1503CrossRefGoogle Scholar
  19. 19.
    Ghose P (2002) Polymer science and technology, 2nd edn. Tata McGraw-Hill, New DelhiGoogle Scholar
  20. 20.
    Hedley C (2002) Plant Physiol 129:516CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of ChemistryUtkal UniversityBhubaneswarIndia

Personalised recommendations