Journal of Materials Science

, Volume 41, Issue 19, pp 6290–6299 | Cite as

Metallurgical and electrochemical approach of Pb–(2wt.%)Sm and Pb(0.08wt.%)Ca(2wt.%)Sm lead alloys

  • A. MaîtreEmail author
  • M. Vilasi


The metallurgical study of Pb–2wt.%Sm and Pb–0.08wt.%Ca–2wt.%Sm has been performed from hardness measurements, DSC tests, TEM and SEM observations. It has been shown that the binary alloys do not hardened by microprecipitation of an intermetallic phase such as Pb3Sm: after 2 years, the hardness of Pb–2wt.%Sm alloy is equal to that of pure lead, i.e. 6 HV. Moreover, for Pb–Ca alloy, it appears that the rare earth addition accelerates the three transformations of the ageing. In the simulated overcharge conditions of the acid battery, the Pb–2wt.%Sm grid alloy shows a lower corrosion resistance in 5 M sulphuric acid solution than pure lead. Indeed, the weight loss measured for the binary alloy is increased by 1.5 when it is compared to that of pure lead. This effect is probably due to the grain size decrease and, consequently, to the intergranular corrosion rising for the Pb–0.08%Ca–2.0%Sm with samarium additions in Pb–Ca alloy.


Samarium PbO2 Intergranular Corrosion Corrosion Layer PbSO4 



The authors would like to acknowledge Renaud PODOR (Laboratoire de Chimie du Solide Minéral, UHP Nancy I, France) and Gwenaelle Toussaint (Site de Recherches et Développement EDF, Moret sur Loing, France) for their technical help during this study.


  1. 1.
    Torralba M (1977) J Power Sources 1:301CrossRefGoogle Scholar
  2. 2.
    Rose MV, Young JA (1976) In Proceedings of the 5th lead international conference, lead development association, vol. 5. Pergamon Press, Oxford, p 37Google Scholar
  3. 3.
    Hilger JP, Boularhouf A (1990) Mater Character 24:159CrossRefGoogle Scholar
  4. 4.
    Miraglio R, Albert L, El Ghachcham A, Steinmetz J, Hilger JP (1995) J Power Sources 53:53CrossRefGoogle Scholar
  5. 5.
    Takahashi K, Yasuda Y, Hasegawa H, Horie S, Kanetsuri K (1995) J Power Sources 53:137CrossRefGoogle Scholar
  6. 6.
    Bouirden L, Hilger JP, Hertz J (1991) J Power Sources 33:27CrossRefGoogle Scholar
  7. 7.
    Myers M, Van Handle HR, Dimartini CR (1974) J Electrochem Soc 121:1526CrossRefGoogle Scholar
  8. 8.
    Vilasi M, Steinmetz J, Steinmetz P (1989) Mater Sci Eng A 120–121:161CrossRefGoogle Scholar
  9. 9.
    Bourguignon G (2003) Thesis of University of Nancy I. (In French)Google Scholar
  10. 10.
    Villars P, Calvert LD (1985) Pearson’s handbook of crystallographic data for intermetallic phase. American Society for Metals, USAGoogle Scholar
  11. 11.
    Hilger JP (1998) J Power Sources 72:184CrossRefGoogle Scholar
  12. 12.
    Maitre A, Bourguignon G, Fiorani JM, Steinmetz J, Ghanbaja J, Laillier P (2003) Mater Sci Eng A 340:103CrossRefGoogle Scholar
  13. 13.
    Ying ZH, Hongyuang F, Yiyu Q (1994) Mat Res Soc Symp Proc 323:137. (In chinese)CrossRefGoogle Scholar
  14. 14.
    Moffatt WG (1978) The handbook of binary phase diagrams. Genium Pub. Corp., New York, USAGoogle Scholar
  15. 15.
    Rocca E, Steinmetz J (1999) Electrochem Acta 44:4611CrossRefGoogle Scholar
  16. 16.
    Wie J, Zhao L, Sun F, Yang H, Chu D (2003) Zhongguo Youse Jinshi Xuebao 13:497Google Scholar
  17. 17.
    Bourguignon G, Maitre A, Rocca E, Steinmetz J. (To be published)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Laboratoire Science des Procédés Céramiques et Traitements de Surface, UMR CNRS 6638Faculté des Sciences et TechniquesLimoges CedexFrance
  2. 2.Laboratoire de Chimie du Solide Minéral, UMR CNRS 7555Faculté des Sciences et TechniquesVandoeuvre-Les-Nancy CedexFrance

Personalised recommendations