Advertisement

Journal of Materials Science

, Volume 42, Issue 12, pp 4513–4520 | Cite as

Cyclic indentation in aluminum

  • Fuqian YangEmail author
  • Lingling Peng
  • Kenji Okazaki
Article

Abstract

Cyclic indentation was used to evaluate the dynamic deformation of aluminum. Under the load-controlled cyclic indentation, the indenter continuously penetrated into the material and reached a steady state at which the penetration speed (per cycle) was a constant. The amplitude of the cyclic indentation depth was basically controlled by the amplitude of the cyclic indentation load, independent of the mean indentation load and the indentation frequency. The steady state penetration speed decreased with increasing the amplitude of the cyclic indentation load due to the increase in the size of plastic zone. It also decreased with the increase in the mean indentation load due to local strain hardening, while it increased with the increase of the indentation frequency.

Keywords

Plastic Zone Indentation Depth Indentation Load Load Amplitude Plastic Energy 

Notes

Acknowledgments

This research is supported by NSF through a grant CMS-0508989 and Kentucky Science and Engineering Foundation through a grant KSEF-148-502-03-73.

References

  1. 1.
    Klesnil M, Lukas P (1980) Fatigue of metallic materials. Amsterdam, The Netherlands7 Elsevier ScienceGoogle Scholar
  2. 2.
    Sarfarazi M, Ghosh K (1987) Eng Fract Mech 27:257CrossRefGoogle Scholar
  3. 3.
    Samuels LE (1986) In: Blau PJ, Lawn BR (eds) Microindentation techniques in materials science and engineering, ASTM STP 889. Am. Soc. Testing and Mater., Philadelphia, pp 5–25Google Scholar
  4. 4.
    Yang FQ, Jiang CB, Du WW, Zhang ZQ, Li SX, Mao SX (2005) Nanotechnology 16:1073CrossRefGoogle Scholar
  5. 5.
    Vaughan DAJ, Guiu F (1887) Brit Ceram Proc 39:101Google Scholar
  6. 6.
    Reece M, Guiu F (1991) J Am Ceram Soc 74:148CrossRefGoogle Scholar
  7. 7.
    Takakura E, Horibe S (1992) J Mater Sci 27:6151CrossRefGoogle Scholar
  8. 8.
    Guillou M-O, Henshall JL, Hooper RM (1993) J Am Ceram Soc 76:1832CrossRefGoogle Scholar
  9. 9.
    Henshall JL, Guillou M-O, Hooper RM (1996) Fatigue Fract Eng Mater Struct 19:903CrossRefGoogle Scholar
  10. 10.
    Guiberteau F, Padture NP, Cai H, Lawn BR (1993) Phil Mag A 68:1003CrossRefGoogle Scholar
  11. 11.
    Cai H, Kalceff MAS, Hooks BM, Lawn BR, Chyung K (1994) J Mater Res 9:2654CrossRefGoogle Scholar
  12. 12.
    Padture NP, Lawn BR (1995) J Am Ceram Soc 78:1431CrossRefGoogle Scholar
  13. 13.
    Kim DK, Jung Y-G, Peterson 1M, Lawn BR (1999) Acta Mater 42:4711CrossRefGoogle Scholar
  14. 14.
    Ann L (1999) J Am Ceram Soc 82:178CrossRefGoogle Scholar
  15. 15.
    Li JCM, Chu SNG (1979) Scripta Metall 13:1021CrossRefGoogle Scholar
  16. 16.
    Chu SNG, Li JCM (1980) J Eng Mater Tech Trans ASME 102:337CrossRefGoogle Scholar
  17. 17.
    Loubet JL, Georges JM, Meille G (1986) In: Blau PJ, Lawn BR (eds) Vickers indentation curves of elastoplastic materials, ASTM STP 889. Am. Soc. Testing and Mater., Philadelphia, pp 72–89Google Scholar
  18. 18.
    Sneddon IN (1992) Quart J Mech Appl Math 45:607CrossRefGoogle Scholar
  19. 19.
    Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University PressGoogle Scholar
  20. 20.
    Cheng YT, Cheng CM (2004) Mater Sci Eng R44:91CrossRefGoogle Scholar
  21. 21.
    Yang FQ, Peng LL, Okazaki K (2004) Metal Mater Trans A 35:3323CrossRefGoogle Scholar
  22. 22.
    Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordGoogle Scholar
  23. 23.
    Johnson KL (1970) J Mech Phys Solids 18:115CrossRefGoogle Scholar
  24. 24.
    Yang FQ, Peng LL, Okazaki K (2004) J Mater Res 19:1243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Chemical and Materials EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations