Journal of Materials Science

, Volume 41, Issue 18, pp 6119–6122 | Cite as

Porosity and pore space characteristics of starch-processed porous ceramics

  • E. GregorováEmail author
  • Z. Živcová
  • W. Pabst

In the last few years starch has gained remarkable popularity as a pore-forming agent in ceramic technology [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], obviously due to the absence of hygiene and ecological concerns, easy handling and processing (including defect-free burnout), the easy commercial availability in arbitrary amounts, low cost and controlled quality, the rounded shape with well defined aspect ratio (usually close to unity, without large scatter) and the well-defined size distribution for each starch type [15]. Apart from its universal function as a pore-forming agent, starch can serve as a body-forming agent in a new shaping technique called starch consolidation casting (SCC), due to its ability to swell in water at elevated temperatures, thus enabling ceramic green bodies to be fabricated by slip-casting of suspensions with starch into non-porous molds (e.g. metal molds) [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30].

In this paper we report on new...


Starch Percolation Threshold Total Porosity Linear Shrinkage Volumetric Shrinkage 



This work was part of the joint project “Characterization of Anisometric Particles and the Microstructure of Heterogeneous Materials” (DAAD and Academy of Sciences of the Czech Republic Grant D2-CZ 21/06-07) and of the research programme “Preparation and Research of Functional Materials and Material Technologies using Micro- and Nanoscopic Methods”, supported by the Ministry of Education, Youth and Sports of the Czech Republic (Grant No. MSM 6046137302). The support is gratefully acknowledged. Further we are indebted to the Almatis GmbH (Germany) and the National Starch & Chemical (UK) for granting free samples of their products.


  1. 1.
    Corbin SF, Apte PS (1999) J Am Ceram Soc 82:693CrossRefGoogle Scholar
  2. 2.
    Davis J, Kristoffersson A, Carlström E, Clegg W (2000) Ceram Soc 83:2369CrossRefGoogle Scholar
  3. 3.
    Galassi C, Roncari E, Capiani C, Fabbri G, Piancastelli A, Peselli M, Silvano F (2002) Ferroelectrics 268:47CrossRefGoogle Scholar
  4. 4.
    Kim JG, Cho WS, Sim JH (2002) J Mater Sci: Mater Electron 13:497Google Scholar
  5. 5.
    Kim JG (2002) Mater Chem Phys 78:154CrossRefGoogle Scholar
  6. 6.
    Kim JG, Sim JH, Cho WS (2002) J Phys Chem Solids 63:2079CrossRefGoogle Scholar
  7. 7.
    Kim JG (2003) Mater Sci Eng A 347:306CrossRefGoogle Scholar
  8. 8.
    Kim JG, Tai WP (2003) Mater Chem Phys 80:162CrossRefGoogle Scholar
  9. 9.
    Kim JG, Kwon YJ, Oh JH, Cho WS, Whang CM, Yoo YC (2004) Mater Chem Phys 83:217CrossRefGoogle Scholar
  10. 10.
    Mattern A, Huchler B, Staudenecker D, Oberacker R, Nagel A, Hoffmann MJ (2004) J Eur Ceram Soc 24:3399CrossRefGoogle Scholar
  11. 11.
    Diaz A, Hampshire S (2004) J Eur Ceram Soc 24:413CrossRefGoogle Scholar
  12. 12.
    Diaz A, Hampshire S (2005) In: Luyten J, Snijkers F (eds) Proceedings of PCM 2005—International Conference on Porous Ceramic Materials, Brugge (Belgium), 20–21 October 2005 (Vito, Mol, 2005), 6 ppGoogle Scholar
  13. 13.
    Reynaud C, Thévenot F, Chartier T, Besson JL (2005) J Eur Ceram Soc 25:589CrossRefGoogle Scholar
  14. 14.
    Barea R, Osendi MI, Ferreira JMF, Miranzo P (2005) Acta Mater 53:3313CrossRefGoogle Scholar
  15. 15.
    Gregorová E, Pabst W, Bohačenko I (2006) J Eur Ceram Soc 26:1301CrossRefGoogle Scholar
  16. 16.
    Lyckfeldt O, Ferreira JMF (1998) J Eur Ceram Soc 18:131CrossRefGoogle Scholar
  17. 17.
    Alves HM, Tari G, Fonseca AT, Ferreira JMF (1998) Mater Res Bull 33:1439CrossRefGoogle Scholar
  18. 18.
    Lyckfeldt O (1999) Brit Ceram Proc 60:219Google Scholar
  19. 19.
    Lemos AF, Ferreira JMF (2000) Mater Sci Eng C 11:35CrossRefGoogle Scholar
  20. 20.
    Pabst W, Gregorová E, Havrda J, Týnová E (2001) In: Heinrich JG, Aldinger F (eds) Ceramic materials and components for engines. Wiley-VCH, Weinheim, pp 587–592Google Scholar
  21. 21.
    Lyckfeldt O (1999) Brit Ceram Proc 60:219Google Scholar
  22. 22.
    Bowden ME, Rippey MS (2002) Key Eng Mater 206–213:1957Google Scholar
  23. 23.
    Týnová E, Pabst W, Gregorová E, Havrda J (2002) Key Eng Mater 206–213:1969Google Scholar
  24. 24.
    Pabst W, Týnová E, Mikač J, Gregorová E, Havrda J (2002) J Mater Sci Lett 21:1101CrossRefGoogle Scholar
  25. 25.
    Týnová E, Pabst W, Gregorová E, Havrda J (2002) In: Luyten J, Erauw JP (eds) Proceedings of the Second International Conference on Shaping of Advanced Ceramics, Gent (Belgium), 24–26 October 2002 (Vito, Mol, 2002), pp 77–82Google Scholar
  26. 26.
    Týnová E, Pabst W, Mikač J (2003) Macromol Symp 203:295CrossRefGoogle Scholar
  27. 27.
    Gregorová E, Pabst W, Trtík P, Vlčková K (2005) In: Plešingerová B, Kuffa, T (eds) Proceedings of the Sixth Conference on Preparation of Ceramic Materials, Košice (Slovak Republic), 13–15 June 2005.Technical University and Slovak Academy of Sciences, Košice, 2005, pp 76–80Google Scholar
  28. 28.
    Gregorová E, Pabst W, Sedlářová I (2005), In: Luyten J, Snijkers F (eds) Proceedings of PCM 2005—International Conference on Porous Ceramic Materials, Brugge (Belgium), 20–21 October 2005 (Vito, Mol, 2005), 6 ppGoogle Scholar
  29. 29.
    Gregorová E, Pabst W (2005) In: Suvorov D (ed) Proceedings of the Ninth Conference and Exhibition of the European Ceramic Society, Portorož (Slovenia), 20–21 October 2005. European Ceramic Society and Slovenian Ceramic Society, Ljubljana, 6 ppGoogle Scholar
  30. 30.
    Gregorová E, Pabst W (in press) J Eur Ceram SocGoogle Scholar
  31. 31.
    German RM (1996) In: Theory and practice of sintering. Wiley Interscience, New York, pp 67–177Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Glass and Ceramics Institute of Chemical Technology PraguePrague 6Czech Republic

Personalised recommendations