Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7704–7719 | Cite as

In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon

  • Jeff T. M. De Hosson
  • Wouter A. Soer
  • Andrew M. Minor
  • Zhiwei Shan
  • Eric A. Stach
  • S. A. Syed Asif
  • Oden L. Warren
Article

Abstract

As a tribute to the scientific work of Professor David Brandon, this paper delineates the possibilities of utilizing in situ transmission electron microscopy to unravel dislocation-grain boundary interactions. In particular, we have focused on the deformation characteristics of Al–Mg films. To this end, in situ nanoindentation experiments have been conducted in TEM on ultrafine-grained Al and Al–Mg films with varying Mg contents. The observed propagation of dislocations is markedly different between Al and Al–Mg films, i.e. the presence of solute Mg results in solute drag, evidenced by a jerky-type dislocation motion with a mean jump distance that compares well to earlier theoretical and experimental results. It is proposed that this solute drag accounts for the difference between the load-controlled indentation responses of Al and Al–Mg alloys. In contrast to Al–Mg alloys, several yield excursions are observed during initial indentation of pure Al, which are commonly attributed to the collective motion of dislocations nucleated under the indenter. Displacement-controlled indentation does not result in a qualitative difference between Al and Al–Mg, which can be explained by the specific feedback characteristics providing a more sensitive detection of plastic instabilities and allowing the natural process of load relaxation to occur. The in situ indentation measurements confirm grain boundary motion as an important deformation mechanism in ultrafine-grained Al when it is subjected to a highly inhomogeneous stress field as produced by a Berkovich indenter. It is found that solute Mg effectively pins high-angle grain boundaries during such deformation. The mobility of low-angle boundaries is not affected by the presence of Mg.

Keywords

Indentation Depth Boundary Motion Load Drop Solute Drag Tilt Boundary 

Notes

Acknowledgements

Indisputably Professor David Brandon became an inspiring and enthusiastic leader in the field of materials science. We are eager to seize this opportunity to thank him for his stimulus provided over the years and for his international leadership. The contributions of Daan Hein Alsem (LBNL–Berkeley) to the preparation of the Al–Mg thin films are gratefully acknowledged. The work is part of the research program of the Netherlands Institute for Metals Research, project nr MC4.01104. The quantitative in-situ nanoindentation holder was developed under a U.S. Department of Energy SBIR grant (DE-FG02–04ER83979) awarded to Hysitron, Inc., which does not constitute an endorsement by DOE of the views expressed in this article. This work also was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

  1. 1.
    Brandon D, Wayne DK (1999) Microstructural characterization of materials. John Wiley, New YorkGoogle Scholar
  2. 2.
    De Hosson JThM, Kanert O, Sleeswyk AW (1983) In: Nabarro FRN (ed) Dislocations in solids, vol 6. North-Holland, Amsterdam, p 441Google Scholar
  3. 3.
    Wall MA, Dahmen U (1997) Microsc Microanal 3:593Google Scholar
  4. 4.
    Wall MA, Dahmen U (1998) Microsc Res Tech 42:248CrossRefGoogle Scholar
  5. 5.
    Stach EA, Freeman T, Minor AM, Owen DK, Cumings J, Wall MA, Chraska T, Hull R, Morris JW Jr, Zettl A, Dahmen U (2001) Microsc Microanal 7:507Google Scholar
  6. 6.
    Minor AM, Morris JW Jr, Stach EA (2001) Appl Phys Lett 79:1625CrossRefGoogle Scholar
  7. 7.
    Minor AM, Lilleodden ET, Stach EA, Morris JW Jr (2002) J Electron Mater 31:958CrossRefGoogle Scholar
  8. 8.
    Minor AM, Lilleodden ET, Stach EA, Morris JW Jr (2004) J Mater Res 19:176CrossRefGoogle Scholar
  9. 9.
    Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Juul Jensen D, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD (1997) Mater Sci Eng A 238:219CrossRefGoogle Scholar
  10. 10.
    Winning M, Gottstein G, Shvindlerman LS (2001) Mater Sci Eng A 317:17CrossRefGoogle Scholar
  11. 11.
    Van Swygenhoven H, Caro A, Farkas D (2001) Mater Sci Eng A 309–310:440CrossRefGoogle Scholar
  12. 12.
    Van KJ Vliet, Tsikata S, Suresh S (2003) Appl Phys Lett 83:1441CrossRefGoogle Scholar
  13. 13.
    Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Science 305:654CrossRefGoogle Scholar
  14. 14.
    Jin M, Minor AM, Stach EA, Morris JW Jr (2004) Acta Mater 52:5381CrossRefGoogle Scholar
  15. 15.
    Larsson P-L, Giannakopoulos AE, Söderlund E, Rowcliffe DJ, Vestergaard R (1996) Int J Solids Structures 33:221CrossRefGoogle Scholar
  16. 16.
    Soer WA, De Hosson JThM, Minor AM, Stach EA, Morris JW Jr (2004) Mater Res Soc Symp Proc 795:U9.3.1Google Scholar
  17. 17.
    Soer WA, De Hosson JThM, Minor AM, Morris JW Jr, Stach EA (2004) Acta Mater 52:5783CrossRefGoogle Scholar
  18. 18.
    Minor AM, Ph.D. thesis (University of California, Berkeley, 2002)Google Scholar
  19. 19.
    Warren OL, Downs SA, Wyrobek TJ (2004) Z Metallkd 95:287CrossRefGoogle Scholar
  20. 20.
    Mondolfo LF (1979) Aluminum alloys: structure and properties. Butterworth, London 313Google Scholar
  21. 21.
    Dahmen U, Westmacott KH (1988) Scripta Metall 22:1673CrossRefGoogle Scholar
  22. 22.
    Schlagowski U, Kanert O, De Hosson JThM, Boom G (1988) Acta Metall 36:865CrossRefGoogle Scholar
  23. 23.
    De Hosson JThM, Kanert O, Schlagowski U, Boom G (1988) J Mater Res 3:645CrossRefGoogle Scholar
  24. 24.
    Nabarro FRN (1975) In: Hirsch PB (ed) The physics of metals, vol 2. Cambridge University Press, p 152Google Scholar
  25. 25.
    Foreman AJE, Makin MJ (1966) Philos Mag 14:911CrossRefGoogle Scholar
  26. 26.
    De Hosson, JThM, Alsem WHM, Tamler H, Kanert O (1983) In: Sih GC, Provan JW (eds) Defects, Fracture and Fatigue. Martinus Nijhoff, The Hague, p 23Google Scholar
  27. 27.
    McCormick PG (1972) Acta Metall 20:351CrossRefGoogle Scholar
  28. 28.
    van den Beukel A (1980) Acta Metall 28:965CrossRefGoogle Scholar
  29. 29.
    Bérces G, Chinh NQ, Juhász A, Lendvai J (1998) J Mater Res 13:1411CrossRefGoogle Scholar
  30. 30.
    Chinh NQ, Csikor F, Kovács Zs, Lendvai J (2000) J Mater Res 15:1037CrossRefGoogle Scholar
  31. 31.
    Tabata T, Fujita H, Nakajima Y (1980) Acta Metall 28:795CrossRefGoogle Scholar
  32. 32.
    Robinson JM (1995) Mater Sci Eng A 203:238CrossRefGoogle Scholar
  33. 33.
    Kubin LP, Estrin Y (1990) Acta Metall Mater 38:697CrossRefGoogle Scholar
  34. 34.
    Chen X, Vlassak JJ (2001) Mater J Res 16:2974CrossRefGoogle Scholar
  35. 35.
    Xu Z-H, Rowcliffe D (2004) Thin Solid Films 447–448:399CrossRefGoogle Scholar
  36. 36.
    Gouldstone A, Koh H-J, Zeng K-Y, Giannakopoulos AE, Suresh S (2000) Acta Mater 48:2277CrossRefGoogle Scholar
  37. 37.
    Gerberich WW, Venkataraman SK, Huang H, Harvey SE, Kohlstedt DL (1995) Acta Metall Mater 43:1569CrossRefGoogle Scholar
  38. 38.
    Gerberich WW, Nelson JC, Lilleodden ET, Anderson P, Wyrobek JT (1996) Acta Mater 44:3585CrossRefGoogle Scholar
  39. 39.
    Bahr DF, Kramer DE, Gerberich WW (1998) Acta Mater 46:3605CrossRefGoogle Scholar
  40. 40.
    Sickafus K, Sass SL (1984) Scripta Metall 18:165CrossRefGoogle Scholar
  41. 41.
    Lin CH, Sass SL (1988) Scripta Metall 22:735CrossRefGoogle Scholar
  42. 42.
    Rittner JD, Seidman DN (1997) Acta Mater 45:3191CrossRefGoogle Scholar
  43. 43.
    Lamelas FJ, Tang M-T, Evans-Lutterodt K, Fuoss PH, Brown WL (1992) Phys Rev B 46:15570CrossRefGoogle Scholar
  44. 44.
    Dahmen U, Hetherington CJD, O’Keefe MA, Westmacott KH, Mills MJ, Daw MS, Vitek V (1990) Philos Mag Lett 62:327CrossRefGoogle Scholar
  45. 45.
    Paciornik S, Kilaas R, Turner J, Dahmen U (1996) Ultramicroscopy 62:15CrossRefGoogle Scholar
  46. 46.
    Pénisson JM, Lançon F, Dahmen U (1999) Mater Sci Forum 294–296:27Google Scholar
  47. 47.
    Merkle KL, Thompson LJ (1999) Phys Rev Lett 83:556CrossRefGoogle Scholar
  48. 48.
    Medlin DL, Foiles SM, Cohen D (2001) Acta Mater 49:3689CrossRefGoogle Scholar
  49. 49.
    Medlin DL, Cohen D, Pond RC (2003) Philos Mag Lett 83:223CrossRefGoogle Scholar
  50. 50.
    Westmacott KH, Hinderberger S, Dahmen U (2001) Philos Mag A 81:1547CrossRefGoogle Scholar
  51. 51.
    Song SG, Vetrano JS, Bruemmer SM (1997) Mater Sci Eng A 232:23CrossRefGoogle Scholar
  52. 52.
    Frank FC (1950) In: A symposium on the plastic deformation of crystalline solids. Office of naval research, Washington, DC, p 151Google Scholar
  53. 53.
    Read WT (1953) Dislocations in crystals. McGraw-Hill, New YorkGoogle Scholar
  54. 54.
    Sutton AP, Balluffi RW (1995) Interfaces in crystalline solids. Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Jeff T. M. De Hosson
    • 1
  • Wouter A. Soer
    • 1
  • Andrew M. Minor
    • 2
  • Zhiwei Shan
    • 2
  • Eric A. Stach
    • 3
  • S. A. Syed Asif
    • 4
  • Oden L. Warren
    • 4
  1. 1.Department of Applied Physics, Materials Science Centre and the Netherlands Institute for Metals ResearchUniversity of GroningenGroningenthe Netherlands
  2. 2.National Center for Electron MicroscopyLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.Hysitron, Inc.MinneapolisUSA

Personalised recommendations