Journal of Materials Science

, Volume 41, Issue 18, pp 6134–6137 | Cite as

Fabrication of high-dispersibility nanocrystals of calcined hydroxyapatite

  • Masahiro Okada
  • Tsutomu FuruzonoEmail author

Hydroxyapatite (HAp) is a major inorganic component of bone and teeth. Artificially synthesized HAp has been extensively used in a variety of applications, such as biomaterials, ion exchangers, adsorbents, and catalysts, by exploiting its biocompatibility and adsorbability of many compounds. When low-crystallinity HAp nanoparticles are calcined to increase thermal and chemical stability, the particles typically sinter into a large agglomerate consisting of polycrystal [1, 2, 3, 4, 5]. Thus, calcined HAp crystals dispersed in liquid medium on a nanoscale have been difficult to obtain. This paper describes the fabrication of HAp nanocrystals by calcination with an anti-sintering agent interspersed between the particles and the subsequent removal of the agent. The HAp nanocrystals obtained here should be suitable for the above applications owing to their high dispersibility in liquid media, high specific surface area, and high thermal and chemical stability.

We have recently developed a...


Calcination Acrylic Acid Silk Fibroin Calcium Hydroxide Calcium Phosphate Phase 



We thank Dr. K. Sato of the Advanced Manufacturing Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), for helpful discussions. This work was partially supported by a grant from PRESTO, Japan Science and Technology Agency, and a Research Grant for Cardiovascular Diseases from the Ministry of Health, Labour and Welfare, Japan.


  1. 1.
    Frenkel J (1945) J Phys USSR 9:385Google Scholar
  2. 2.
    Kuczynski GC (1949) Trans AIME 185:169Google Scholar
  3. 3.
    Barralet JE, Best SM, Bonfield W (2000) J Mat Sci Mater Med 11:719CrossRefGoogle Scholar
  4. 4.
    Landi E, Tampieri A, Celotti G, Sprio S (2000) J Eur Ceram Soc 20:2377CrossRefGoogle Scholar
  5. 5.
    Bernache-Assollant D, Ababoua A, Championa E, Heughebaertb M (2003) J Eur Ceram Soc 23:229CrossRefGoogle Scholar
  6. 6.
    Furuzono T, Sonoda K, Tanaka J (2001) J Biomed Mater Res 56:9CrossRefGoogle Scholar
  7. 7.
    Furuzono T, Kishida A, Tanaka J (2004) J Mater Sci Mater Med 15:19CrossRefGoogle Scholar
  8. 8.
    Furuzono T, Wang P, Korematsu A, Miyazaki K, Oido-Mori M, Kowashi Y, Ohura K, Tanaka J, Kishida A (2003) J Biomed Mater Res B Appl Biomater 65B:217CrossRefGoogle Scholar
  9. 9.
    Somiya S, Ioku K, Yoshimura M (1988) Mater Sci Forum 34–36:371Google Scholar
  10. 10.
    Yoshimura M, Suda H, Okamoto K, Ioku K (1994) J Mater Sci 29:3399CrossRefGoogle Scholar
  11. 11.
    Papargyris AD, Botis AI, Papargyri SA (2002) Key Eng Mater 206–213:83Google Scholar
  12. 12.
    Carless JE, Foster AA (1966) J Pharm Pharmacol 18:697CrossRefGoogle Scholar
  13. 13.
    Wei M, Ruys AJ, Milthorpe BK, Sorrell CC (1999) J Biomed Mater Res 45:11CrossRefGoogle Scholar
  14. 14.
    Furuzono T, Walsh D, Sato K, Sonoda K, Tanaka J (2001) J Mater Sci Lett 20:111CrossRefGoogle Scholar
  15. 15.
    Emerson WH, Fisher EE (1962) Arch Biol 7:671CrossRefGoogle Scholar
  16. 16.
    Bonel G, Heughebaert J-C, Heughebaert M, Lacout JL, Lebugle A (1988) Ann NY Acad Sci 523:115CrossRefGoogle Scholar
  17. 17.
    Misra DN (1993) J Dent Res 10:1418CrossRefGoogle Scholar
  18. 18.
    Yoshida Y, Van Meerbeek B, Nakayama Y, Yoshioka M, Snauwaert J, Abe Y, Lambrechts P, Vanherle G, Okazaki M (2001) J Dent Res 80:1565CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Bioengineering, Advanced Medical Engineering CenterNational Cardiovascular Center Research InstituteSuita, OsakaJapan

Personalised recommendations