Advertisement

Journal of Materials Science

, Volume 41, Issue 23, pp 7853–7861 | Cite as

Magnetically controlled microstructure evolution in non-ferromagnetic metals

  • D. A. Molodov
  • P. J. Konijnenberg
  • L. A. Barrales-Mora
  • V. Mohles
Article

Abstract

The microstructure evolution during grain growth in magnetically anisotropic materials can be affected by a magnetic field due to an additional driving force for grain boundary motion which arises from a difference in magnetic free energy density between differently oriented grains. Therefore each grain of a polycrystal, exposed to a magnetic field, is inclined to grow or to shrink by a magnetic force depending on the orientation of the respective grain and its surrounding neighbors with regard to the field direction. A theoretical analysis of the grain growth kinetics in the presence of an external magnetic field reveals that magnetically affected grain growth may result in an orientation distribution that favours grains with a lower magnetic free energy density. As it is experimentally demonstrated on polycrystalline zinc, titanium and zirconium, the crystallographic texture in magnetically anisotropic non-magnetic materials can be effectively changed and controlled by means of annealing in a magnetic field. EBSD-analysis revealed that the observed asymmetrical texture after magnetic annealing is due to a large extent to a significant difference in the number of grains that make up different texture components. The results of computer simulations of magnetically affected grain growth in 2-D polycrystals are in a good agreement with theoretical predictions and experimental findings.

Keywords

Magnetic Field Field Direction Triple Junction Texture Component Boundary Motion 

Notes

Acknowledgements

The authors express their gratitude to the Deutsche Forschungsgemeinschaft for financial support (Grant MO 848/6-1). Part of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF (Cooperative Agreement No. DMR-0084173), by the State of Florida and by the DOE. Helpful and stimulated discussions with Profs. G. Gottstein, L. S. Shvindlerman, V. Yu. Novikov, C. Krill and P. Streitenberger are gratefully acknowledged. L.A.B.-M. conveys his thanks to the Deutscher Akademischer Austauschdienst (DAAD) for his Ph.D. stipend.

References

  1. 1.
    McLean M (1982) Metal Sci 16:31CrossRefGoogle Scholar
  2. 2.
    T Watanabe (2001) In: Gottstein G, Molodov DA (eds) Recrystallization and grain growth. Springer, Berlin, p 11Google Scholar
  3. 3.
    Deus AM, Fortes MA, Ferreira PJ, Vander Sande JB (2002) Acta Mater 50:3317CrossRefGoogle Scholar
  4. 4.
    Mullins WW (1956) Acta Metall 4:421CrossRefGoogle Scholar
  5. 5.
    Fraser MJ, Gold RE, Mullins WW (1961) Acta Metall 9:960CrossRefGoogle Scholar
  6. 6.
    Molodov DA, Gottstein G, Heringhaus F, Shvindlerman LS (1997) Scripta Mater 37:1207CrossRefGoogle Scholar
  7. 7.
    Molodov DA, Gottstein G, Heringhaus F, Shvindlerman LS (1998) Acta Mater 46:5627CrossRefGoogle Scholar
  8. 8.
    Sheikh-Ali AD, Molodov DA, Garmestani H (2003) Appl Phys Lett 82:3005–3007CrossRefGoogle Scholar
  9. 9.
    Konijnenberg PJ, Molodov DA, Gottstein G (2005) In: NHMFL 2004 Annual Research Review. NHMFL, Tallahassee, p 15. http://www.magnet.fsu.edu/publications/2004annualreport/reports/2004-NHMFL-Report137.pdfGoogle Scholar
  10. 10.
    Konijnenberg PJ, Molodov DA, Gottstein G (2004) Mater Sci Forum 467–470:763CrossRefGoogle Scholar
  11. 11.
    Molodov DA, Konijnenberg PJ (2005) Z Metallkd 96:1158CrossRefGoogle Scholar
  12. 12.
    Sheikh-Ali AD, Molodov DA, Garmestani H (2002) Scripta Mater 46:857CrossRefGoogle Scholar
  13. 13.
    Molodov DA, Sheikh-Ali AD (2004) Acta Mater 52:4377CrossRefGoogle Scholar
  14. 14.
    Molodov DA, Konijnenberg PJ, Bozzolo N, Sheikh-Ali AD (2005) Mater Lett 59:3209CrossRefGoogle Scholar
  15. 15.
    Molodov DA, Konijnenberg PJ, Bozzolo N, will be publishedGoogle Scholar
  16. 16.
    Weisstein EW In: Mathworld – a Wolfram web resource. http://mathworld.wolfram.com/SpherePointPicking.htmlGoogle Scholar
  17. 17.
    Hillert M (1965) Acta Metall 13:227CrossRefGoogle Scholar
  18. 18.
    Novikov VYU (1999) Acta Mater 47:4705Google Scholar
  19. 19.
    Gangulee A (1974) J Appl Phys 45:3749CrossRefGoogle Scholar
  20. 20.
    Mullins WW (1956) J Appl Phys 27:900CrossRefGoogle Scholar
  21. 21.
    Von Neumann J (1952) In: Metal interfaces. American Society for Testing Materials, Cleveland, p 108Google Scholar
  22. 22.
    Volkenshtein NV, Galoshina EV, Panikovskaya EB (1975) Sov Phys JETP 40:730Google Scholar
  23. 23.
    Kawasaki K, Nagai T, Nakashima K (1989) Phil Mag 60:339CrossRefGoogle Scholar
  24. 24.
    Weigand D, Brechet Y, Lepinoux J (1998) Phil Mag B 78:329CrossRefGoogle Scholar
  25. 25.
    Frost HJ, Thompson CV, Howe CL, Wang J (1998) Scripta Metall Mater 22:65CrossRefGoogle Scholar
  26. 26.
    Fayad W, Thompson CV, Frost HJ (1999) Scripta Mater 40:1199CrossRefGoogle Scholar
  27. 27.
    Barrales-Mora LA, Mohles V, Konijnenberg PJ, Molodov DA (2006) Comp Mater Sci In pressGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • D. A. Molodov
    • 1
  • P. J. Konijnenberg
    • 1
  • L. A. Barrales-Mora
    • 1
  • V. Mohles
    • 1
  1. 1.Institute of Physical Metallurgy and Metal PhysicsRWTH Aachen UniversityAachenGermany

Personalised recommendations