Journal of Materials Science

, Volume 41, Issue 23, pp 7760–7768 | Cite as

Some aspects of the anisotropy of grain boundary segregation and wetting

  • P. WynblattEmail author
  • D. Chatain
  • Y. Pang


A recently developed model of grain boundary (GB) segregation, in terms of the five macroscopic parameters of GB orientation, has been exercised to explore the anisotropy of GB segregation. The five macroscopic GB orientation parameters are defined by means of the orientations of the two crystallographic planes that terminate the crystals on either side of the GB, and a twist angle. Some important conclusions include the following: (a) the composition of a boundary depends on all five parameters of GB orientation, (b) the segregation profile across a GB depends on the two planes which terminate the adjacent crystals, (c) the composition profile across GB’s terminated by identical crystallographic planes is symmetric, but is asymmetric when GB’s are terminated by different planes, and (d) the strength of the segregation on one side of a GB influences the extent of segregation on the other. Some experimental results on Nb-doped TiO2 are presented in order to verify above predicted trends. In addition, it is shown that the model predicts the possibility of anisotropic GB wetting transitions as two-phase coexistence is approached.


Grain Boundary Twist Angle Composition Profile Orientation Imaging Microscopy Embed Atom Method 



PW and YP wish to acknowledge with thanks support of their research by the MRSEC Program of the National Science Foundation under award DMR-0079996. DC acknowledges with thanks support of her research by the COOLCOP project of the European Space Agency.


  1. 1.
    Pang Y, Wynblatt P (2005) J Am Ceram Soc 88:2286CrossRefGoogle Scholar
  2. 2.
    Pang Y, Wynblatt P (2006) J Am Ceram Soc 89:666CrossRefGoogle Scholar
  3. 3.
    Wolf D (1989) Acta Metall 37:1983CrossRefGoogle Scholar
  4. 4.
    Wolf D (1989) Acta Metall 37:2823CrossRefGoogle Scholar
  5. 5.
    Wolf D (1990) Acta Metall Mater 38:791CrossRefGoogle Scholar
  6. 6.
    Seidman DN (2002) Annu Rev Mater Res 32:235CrossRefGoogle Scholar
  7. 7.
    Wynblatt P, Shi Z (2005) J Mater Sci 40:2765CrossRefGoogle Scholar
  8. 8.
    Bishop CM, Cannon RM, Carter WC (2005) Acta Mater 53:4755CrossRefGoogle Scholar
  9. 9.
    Tang M, Carter WC, Cannon RM (2006) Phys Rev B 73(2):24102CrossRefGoogle Scholar
  10. 10.
    Wynblatt P, Takashima M (2001) In: Eustathopoulos N, Nogi K, Sobczak N (eds), Proceedings of HTC-2000, Trans JWRI 30:11Google Scholar
  11. 11.
    Wynblatt P, Takashima M (2001) Interface Sci 9:265CrossRefGoogle Scholar
  12. 12.
    López GA, Mittemeijer EJ, Straumal BB (2004) Acta Mater 52:4537CrossRefGoogle Scholar
  13. 13.
    Avishai A, Sheu C, Kaplan WD (2005) Acta Mater 53:1559CrossRefGoogle Scholar
  14. 14.
    Avishai A, Kaplan WD (2005) Acta Mater 53:1571CrossRefGoogle Scholar
  15. 15.
    Mclean D (1957) Grain boundaries in metals. Oxford Press, LondonGoogle Scholar
  16. 16.
    Wynblatt P, Ku RC (1979) In: Johnson WC, Blakely JM (eds), Interfacial segregation. ASM, Metals Park, Ohio, p 115Google Scholar
  17. 17.
    Wynblatt P, Saul A, Chatain D (1998) Acta Mater 46:2337CrossRefGoogle Scholar
  18. 18.
    Lee YW, Aaronson HI (1980) Surface Sci 95:227CrossRefGoogle Scholar
  19. 19.
    Lee YW, Aaronson HI (1980) Acta Metall 28:539CrossRefGoogle Scholar
  20. 20.
    Udler D, Seidman DN (1992) Phys Stat Sol B 172:267CrossRefGoogle Scholar
  21. 21.
    Udler D, Seidman DN (1994) Acta Metall Mater 42:1959CrossRefGoogle Scholar
  22. 22.
    Foiles SM, Baskes MI, MS Daw (1986) Phys Rev B33:7983CrossRefGoogle Scholar
  23. 23.
    Cahn JW (1977) J Chem Phys 66:3667CrossRefGoogle Scholar
  24. 24.
    Schick M (1990) In: Charvolin J, Joanny JF, Zinn-Justin J (eds), Liquids at interfaces. Elsevier, Amsterdam, p 415Google Scholar
  25. 25.
    Widom B (1978) J Chem Phys 68:3878CrossRefGoogle Scholar
  26. 26.
    Cahn JW (2000) Physica A 279:195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.Centre de Recherche en Matière Condensée et Nanosciences-CNRS, Laboratoire Propre du CNRS associé aux Universités d’Aix-Marseille 2 et 3Marseille cedex 9France
  3. 3.Sort/Test Technology DevelopmentIntel CorporationAlohaUSA

Personalised recommendations