Advertisement

Journal of Materials Science

, Volume 42, Issue 10, pp 3621–3626 | Cite as

On flow stress anisotropy in Ti-6Al-4V alloy sheet during superplastic deformation

  • Askar Sheikh-Ali
Article
  • 138 Downloads

Abstract

The anisotropy of flow stress in a cold rolled sheet of Ti-6Al-4V alloy has been observed during superplastic deformation at 850 °C. At this temperature, the alloy has duplex microstructure with almost equiaxed grains of the alpha and beta phases. The maximum value of flow stress has been established for the rolling direction and minimum—for the transverse one. Also, the anisotropy of crystallographic texture weakening in the alpha phase has been observed. However, it has been demonstrated that texture in the alpha phase cannot be responsible for the observed anisotropic behavior. Texture in the beta phase is the suggested reason for the flow-stress anisotropy during superplastic deformation.

Keywords

Flow Stress Alloy Sheet Crystallographic Texture Basal Slip Grain Boundary Slide 

References

  1. 1.
    Naziri H, Pearce R (1970) J Inst Metals 98:71Google Scholar
  2. 2.
    Dunlop GL, Taplin DMR (1971) J Austr Inst Metals 16:195Google Scholar
  3. 3.
    Matsuki K, Uetani Y, Yamada M, Murakami Y (1976) Metal Sci 10:235CrossRefGoogle Scholar
  4. 4.
    Bricknell RH, Edington JW (1978) Acta Metall 27:1313CrossRefGoogle Scholar
  5. 5.
    Kaibyshev OA, Kazachkov IV, Salikhov SYa (1978) Acta Metall 26:1887CrossRefGoogle Scholar
  6. 6.
    Kaibyshev OA, Kazachkov IV, Galeev RM (1981) J Mater Sci 16:2501CrossRefGoogle Scholar
  7. 7.
    McDarmaid DS, Bowen AW, Partridge PG (1984) Mater Sci Eng 64:105CrossRefGoogle Scholar
  8. 8.
    McDarmaid DS, Bowen AW, Partridge PG (1984) J Mater Sci 19:2378CrossRefGoogle Scholar
  9. 9.
    Partridge PG, McDarmaid DS, Bowen AW (1985) Acta Metall 33:571CrossRefGoogle Scholar
  10. 10.
    McDarmaid DS, Partridge PG (1986) J Mater Sci 21:1525CrossRefGoogle Scholar
  11. 11.
    Bowen AW, McDarmaid DS, Partridge PG (1991) J Mater Sci 26:3457CrossRefGoogle Scholar
  12. 12.
    Benay O, Lucas AS, Obadia S, Vadon A (1994) Mater Sci Forum 157–162:1357CrossRefGoogle Scholar
  13. 13.
    Bai B, Yang HS, Chen N, Mukherjee AK (2001) Mater Sci Technol 17:269CrossRefGoogle Scholar
  14. 14.
    Cope MT, Ridley N (1986) Mater Sci Technol 2:140CrossRefGoogle Scholar
  15. 15.
    Harris GB (1952) Philos Mag 43:113CrossRefGoogle Scholar
  16. 16.
    Morris PR (1959) J Appl Phys 30:595CrossRefGoogle Scholar
  17. 17.
    Kaibyshev OA (1975) Plasticity and superplasticity of metals. Metallurgiya, Moscow, p 86 (in Russian)Google Scholar
  18. 18.
    Matsuki K, Hariyama N, Tokizawa M, Murakami Y (1983) Metal Sci 17:503CrossRefGoogle Scholar
  19. 19.
    Leader JR, Neal DF, Hammond C (1986) Metall Trans A 17A:93CrossRefGoogle Scholar
  20. 20.
    Salishchev GA, Lutfullin RYa (1988) In: Hamilton CH, Paton NE (eds) Superplasticity and Superplastic Forming, TMS, Warrendale, PA, p 104Google Scholar
  21. 21.
    Kim JS, Chang YW, Lee CS (1998) Metall Mater Trans A 29A:217CrossRefGoogle Scholar
  22. 22.
    Sherby OD (1989) ISIJ Int 29:698CrossRefGoogle Scholar
  23. 23.
    Sheikh-Ali AD, Garmestani H (2001) Mater Sci Forum 357–359:393CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Physics and EngineeringKazakh-British Technical UniversityAlmatyRepublic of Kazakhstan

Personalised recommendations