Journal of Materials Science

, Volume 41, Issue 19, pp 6260–6265 | Cite as

Phase formation, sintering behavior and microwave dielectric properties of bismuth and manganese co-doped [(Pb, Ca) La](Fe, Nb)O3+δ solid solution

  • Ming-Zhe HuEmail author
  • Jun Qian
  • Hao-Shuang Gu
  • Yong-De Hao


The phase formation, sintering behavior and microwave dielectric properties of Bi2O3 and MnO2 co-doped [(Pb, Ca) La](Fe, Nb)O3+δ (PCLFN) ceramics were investigated. The Bi2O3 and MnO2 binary dopants formed stable and low melting temperature solubilities at grain boundary which resulted in an effectively lowered sintering temperature by about 140 °C a more rapid sintering process and enhanced bulk densities. Sintering procedure has significant effect on grain size and porosities in ceramics. With high sintering temperature and time, the evaporation of PbO scaled up from surface toward the bulk and resulted in a Pb2+ deficient layer up to 0.25 mm depth under ceramic surface. Investigation of sintering dynamic revealed that either volume diffusion or second-order interface mechanism controlled the grain growth in present system. An optimal microwave dielectric properties of εr = 91.1, Qf = 4,870 GHz and τf = 18.5 ppm/°C could be obtained in Bi2O3 and MnO2 co-doped [(Pb, Ca) La](Fe, Nb)O3+δ ceramics sintered at 1,050 °C for 4 h when the quality ratio of Bi2O3/MnO2 was 1 and the doping content w = 1 wt%.


MnO2 Sinter Temperature Bi2O3 Microwave Dielectric Property Sinter Time 



This work was supported by the National Nature Science Foundation of China under Grant No. 50371056, the Key Items of Hubei Education Committee with the granted No. 030-094105 the Key Lab Item 2006 of Material Physics and Chemistry of Hubei University and the Nature Science Foundation of Hubei University granted 030-095132.


  1. 1.
    Ishizaki T, Fujita M, Kagata H et al (1994) IEEE Trans Microwave Theory Tech 42:2017CrossRefGoogle Scholar
  2. 2.
    Cho SY, Youn HJ, Kim DW, Kim TG, Hong KS (1998) J Am Ceram Soc 81(11):3038CrossRefGoogle Scholar
  3. 3.
    Ha JY, Choi JW, Kim HJ, Yoon SJ, Yoon KH (2003) Mater Chem Phys 79:261CrossRefGoogle Scholar
  4. 4.
    Yang Q, Soo KE, Jun X (2002) J Chin Ceram Soc 31(5):554Google Scholar
  5. 5.
    Hakki BW, Coleman PD (1962) IRE Trans Microwave Theory Tech 8:402CrossRefGoogle Scholar
  6. 6.
    Germen RM (1985) Liquid phase sintering [M]. Plenum Publishing, New York, p 239CrossRefGoogle Scholar
  7. 7.
    Jang SL, Chino KU, Nomura S (1980) Ferroelectrics 27:31CrossRefGoogle Scholar
  8. 8.
    Kang DH, Yon KH (1988) Ferroelectrics 87:255CrossRefGoogle Scholar
  9. 9.
    Mendelson MI (1969) J Am Ceram Soc 8:443CrossRefGoogle Scholar
  10. 10.
    Huang CL, Weng MH (2001) Mater Res Bull 36:683CrossRefGoogle Scholar
  11. 11.
    Kim BH, Sakurai O, Wakiya N, Mizutani N (1997) Mater Res Bull 32:451CrossRefGoogle Scholar
  12. 12.
    Chermant JL, Coster M (1977) J Microsc 109(3):269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Ming-Zhe Hu
    • 1
    Email author
  • Jun Qian
    • 1
  • Hao-Shuang Gu
    • 2
  • Yong-De Hao
    • 3
  1. 1.School of Physics and ElectronicsHubei UniversityWuhanP. R. China
  2. 2.Key Lab of Material Physics and ChemistryHubei UniversityWuhanP. R. China
  3. 3.Department of ElectronicsHua Zhong University of Science and TechnologyWuhanP. R. China

Personalised recommendations