Journal of Materials Science

, Volume 41, Issue 19, pp 6460–6464 | Cite as

Magnetic and electrical properties of lanthanum substituted yttrium iron garnets

  • S. R. Nimbore
  • D. R. Shengule
  • S. J. Shukla
  • G. K. Bichile
  • K. M. Jadhav


Polycrystalline yttrium lanthanum iron garnets (Y3LaxFe5-xO12) with varying La substitution (0 ≤ x ≤ 0.5) have been prepared in the pellet form, and studied by X-ray diffraction, magnetization, a.c. susceptibility and electrical resistivity measurements. The lattice constants are determined and the applicability of Vegard’s law has been tested. The saturation magnetization (4 πMS) decreases very slowly almost linearly with increasing x from x = 0.0–0.5 indicating minimal reduction in ferrimagnetism and least magnetic loss. Variation of saturation magnetic moment per formula unit at 300 K with x can be explained satisfactorily assuming the collinear spin-ordering model. The Curie temperature (Tc) reduces very slowly with increasing x, which is consistent with the observed decrease in 4 πMS with x. The activation energy (E) decreases very slowly with increasing x for x > 0.1.


Saturation Magnetization Yttrium Iron Garnet Electrical Resistivity Measurement Yttrium Iron Collinear Spin 



The authors are thankful to Professor R. G. Kulkarni, Dept. of physics, Shivaji University, Kolhapur, India for his valuable suggestion and fruitful discussion. The author is also thankful to USIC, Shivaji University, Kolhapur for providing X-ray diffractometric charts.


  1. 1.
    Lax B, Button K (1962) Microwave ferrities and ferri-magnetics, Mcgraw-hill book Co, Inc., New York Google Scholar
  2. 2.
    Srinivasan TT, Prakash O, Patni MJ (1981) Trans Ind Ceramic Soc 40(1):1CrossRefGoogle Scholar
  3. 3.
    Suresh K, Patil KC (1994) J Alloys compounds 209:203CrossRefGoogle Scholar
  4. 4.
    Microwave ferrities materials catalogue (1970) Trans. Tech. Incorporation, Graithsburge, Maryland, USA Google Scholar
  5. 5.
    Multani M, Nandikar NG, Venktraman N, Raghupathy V, Pansare AK, Gurjar A (1989) Meter Res Bull 14:1251CrossRefGoogle Scholar
  6. 6.
    Murumkar VD, Modi KB, Jadhav KM, Bichile GK, Kulkarni RG (1997) Mat Lett 32:281CrossRefGoogle Scholar
  7. 7.
    RadhaKrishanamurthy C, Likhite SD, Sastry P (1971) Phil Mag 23:503CrossRefGoogle Scholar
  8. 8.
    RadhaKrishanamurthy C, Likhite SD, Sahstrabudhe P (1978) Proc Indian Acad Sci 87A:245Google Scholar
  9. 9.
    Whinfrey CG, Eckrot DW, Touber A (1982) J Am Chem Soc 82:2695CrossRefGoogle Scholar
  10. 10.
    Hudson AS (1970) J Phys D Appl phys 3:251CrossRefGoogle Scholar
  11. 11.
    Miller A (1959) J Appl Phys 30:145CrossRefGoogle Scholar
  12. 12.
    Neel L (1950) CR Acad Sci Paris 230:375Google Scholar
  13. 13.
    Bahadur D, Prakash OM, Kumar D (1981) Bull Mater Sci 3:325CrossRefGoogle Scholar
  14. 14.
    Van Hemlot R, Wercker J, Holzafel B, Shultz L, Samwer K (1993) Rev Lett 71:2331CrossRefGoogle Scholar
  15. 15.
    McGramack M, Jin S, Tiefel TH, Fleming RM, Philips JM, Ramesh R (1994) Appl Phy Lett 64:3045CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • S. R. Nimbore
    • 1
  • D. R. Shengule
    • 1
  • S. J. Shukla
    • 1
  • G. K. Bichile
    • 1
  • K. M. Jadhav
    • 1
  1. 1.Department of PhysicsDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia

Personalised recommendations