Journal of Materials Science

, Volume 41, Issue 18, pp 6015–6025 | Cite as

Fractographic and numerical study of hydrogen–plasticity interactions near a crack tip

  • J. ToribioEmail author
  • V. Kharin


This paper offers a fractographic and numerical study of hydrogen–plasticity interactions in the vicinity of a crack tip in a high-strength pearlitic steel subjected to previous cyclic (fatigue) precracking and posterior hydrogen-assisted cracking (HAC) under rising (monotonic) loading conditions. Experiments demonstrate that heavier cyclic preloading improves the HAC behaviour of the steel. Fractographic analysis shows that the microdamage produced by hydrogen is detectable through a specific microscopic topography: tearing topography surface or TTS. A high resolution numerical modelling is performed to reveal the elastoplastic stress–strain field in the vicinity of the crack tip subjected to cyclic preloading and subsequent monotonic loading up to the fracture instant in the HAC tests, and the calculated plastic zone extent is compared with the hydrogen-assisted microdamage region (TTS). Results demonstrate that the TTS depth has no relation with the active plastic zone dimension, i.e., with the size of the only region in which there is dislocation movement, so hydrogen transport cannot be attributed to dislocation dragging, but rather to random-walk lattice diffusion. It is, however, stress-assisted diffusion in which the hydrostatic stress field plays a relevant role. The beneficial effect of crack-tip plastic straining on HAC behaviour might be produced by the delay of hydrogen entry caused by residual compressive stresses and by the enhanced trapping of hydrogen as a consequence of the increase of dislocation density after cyclic plastic straining.


Stress Intensity Factor Plastic Zone Plastic Zone Size Slow Strain Rate Test Hydrogen Transport 



The authors wish to thank the financial support of their research at the University of Salamanca provided by the following institutions: Spanish Ministry for Scientific and Technological Research MCYT-FEDER (Grant MAT2002-01831), Junta de Castilla y León (JCYL; Grant SA078/04) and Spanish Foundation “Memoria de D. Samuel Solórzano Barruso”. In addition, the authors wish to express their gratitude to EMESA TREFILERIA S.A. (La Coruña, Spain) for providing the steel used in the experimental programme.


  1. 1.
    Troiano AR (1960) Trans ASM 52:54Google Scholar
  2. 2.
    Van Leeuwen HP (1974) Engng Fracture Mech 6:141CrossRefGoogle Scholar
  3. 3.
    Toribio J, Kharin V (1997) Fatigue Fract Engng Master Struct 20:729CrossRefGoogle Scholar
  4. 4.
    Tien JK, Thompson AW, Bernstein IM, Richards RJ (1976) Metall Trans 7A:821CrossRefGoogle Scholar
  5. 5.
    Johnson HH, Hirth JP (1976) Metall Trans 7A:1543CrossRefGoogle Scholar
  6. 6.
    Nair SV, Jensen RR, Tien JK (1983) Metall Trans 14A:385CrossRefGoogle Scholar
  7. 7.
    Toribio J (1993) J Mater Sci 28:2289CrossRefGoogle Scholar
  8. 8.
    Toribio J (1992) J Mater Sci Lett 11:1151CrossRefGoogle Scholar
  9. 9.
    Toribio J (1996) Mater Sci Engng A219:180CrossRefGoogle Scholar
  10. 10.
    Toribio J, Lancha AM (1992) J Mater Sci Lett 11:1085CrossRefGoogle Scholar
  11. 11.
    Toribio J, Lancha AM (1995) J Mater Sci Lett 14:1204CrossRefGoogle Scholar
  12. 12.
    Toribio J, Lancha AM (1996) J Mater Sci 31:6015CrossRefGoogle Scholar
  13. 13.
    Parkins RN, Elices M, Sánchez-Gálvez V, Caballero L (1982) Corros Sci 22:379CrossRefGoogle Scholar
  14. 14.
    Thompson AW, Chesnutt JC (1979) Metall Trans 10A:1193CrossRefGoogle Scholar
  15. 15.
    Costa JE, Thompson AW (1982) Metall Trans 13A:1315CrossRefGoogle Scholar
  16. 16.
    Toribio J, Lancha AM, Elices M (1991) Scripta Metall Mater 25:2239CrossRefGoogle Scholar
  17. 17.
    Toribio J, Lancha AM, Elices M (1992) Metall Trans 23A:1573CrossRefGoogle Scholar
  18. 18.
    Toribio J (1997) Metall Mater Trans 28A:191CrossRefGoogle Scholar
  19. 19.
    Handerhan KJ, Garrison WM Jr (1992) Acta Metall Mater 40:1337CrossRefGoogle Scholar
  20. 20.
    MARC User Information, Marc Analysis Research Corporation, Palo Alto, 1994Google Scholar
  21. 21.
    Toribio J, Kharin V (1998) J Mech Behav Mater 9:205Google Scholar
  22. 22.
    Zakroczymski T (1985) Corrosion 41:485CrossRefGoogle Scholar
  23. 23.
    Kumnick AJ, Johnson HH (1980) Acta Metall 28:33CrossRefGoogle Scholar
  24. 24.
    Toribio J, Kharin V (2001) Mater Sci Engng A319–A321:535CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials EngineeringUniversity of SalamancaZamoraSpain
  2. 2.Pidstryhach Institute for Applied Mechanics and MathematicsLvivUkraine

Personalised recommendations