Advertisement

Journal of Materials Science

, Volume 41, Issue 19, pp 6198–6206 | Cite as

The interface electronic structure of thiol terminated molecules on cobalt and gold surfaces

  • A. N. Caruso
  • L. G. Wang
  • S. S. Jaswal
  • E. Y. Tsymbal
  • P. A. Dowben
Interface Science

Abstract

The bonding strength and interfacial electronic properties of biphenyldimethyldithiol (HS–CH2–C6H4–C6H4–CH2–SH) adsorbed on Au(111) and polycrystalline cobalt are identified from combined photoemission and inverse photoemission. In order to develop a better understanding of the thiol functional group to metal surface interaction, the stable orientation, bonding site, bonding strength and interfacial electronic properties of methylthiol (S–CH3) adsorbed on Au(111) and Co(0001) have been determined by ab initio density functional calculations. Both experiment and theory suggest that thiol bonding to cobalt surfaces is stronger compared to gold surfaces. The transfer of charge toward the adsorbed sulfur is greater for the thiols on cobalt than on gold.

Keywords

Molecular Orbital High Occupied Molecular Orbital Photoemission Spectrum Binding Energy Shift Charge Density Difference 

Notes

Acknowledgments

This work was supported by the National Science Foundation through grant CHE-0415421 and the NSF “QSPINS” MRSEC (DMR-0213808), as well as the W.M Keck Foundation. Calculations were completed utilizing the Research Computing Facility of the University of Nebraska-Lincoln. The authors would like to thank R. Rajesh and J. Redepenning for providing the 1,1′-biphenyl-4,4′-dimethyldithiol (BPDMT) source molecule used in the experiments.

References

  1. 1.
    Ulman A (1991) An introduction to ultrathin organic films. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Swalen D, Allara DL, Andrade JD, Chandross EA, Garoff S, Israelachvili J, McCarthy TJ, Murray R, Pease RF, Rabolt JF, Wynne KJ, Yu H (1987) Langmuir 3:932Google Scholar
  3. 3.
    Mann B, Kuhn H (1971) J Appl Phys 42:4398Google Scholar
  4. 4.
    Polymeropoulos EE, Sagiv J (1978) J Chem Phys 69:1836Google Scholar
  5. 5.
    Netzer L, Sagive J (1983) J Am Chem Soc 105:674Google Scholar
  6. 6.
    Leger A, Klein J, Belin M, Defourne D (1971) Thin Solid Films 8:R51Google Scholar
  7. 7.
    Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnar S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Science 294:1488Google Scholar
  8. 8.
    Nan Ce Wen, Li Ming, Feng X, Yu S (2001) Appl Phys Lett 78:2527Google Scholar
  9. 9.
    Nan Ce Wen, Li Ming, Huang JH (2001) Phys Rev B 63:144415Google Scholar
  10. 10.
    Dediu V, Murgia M, Matacotta FC, Talini C, Barbanera S (2002) Solid State Commun 122:181Google Scholar
  11. 11.
    Xiong ZH, Wu D, Vardeny ZV, Shi J (2004) Nature 427:821Google Scholar
  12. 12.
    Xie SJ, Ahn KH, Smith DL, Bishop AR, Saxena A (2003) Physical Review B 67:125202Google Scholar
  13. 13.
    Taliani C, Dediu V, Biscarini F, Cavallini M, Murgia M, Ruani G, Nozar P (2002) Phase Transitions 75:1049Google Scholar
  14. 14.
    Fu JY, Ren JF, Liu DS, Xie SJ (2004) Acta Physica Sinica 53:1989Google Scholar
  15. 15.
    Ren JF, Fu JY, Liu DS, Xie SJ (2004) Acta Physica Sinica 53:3814Google Scholar
  16. 16.
    Ovchenkov YA, Geisler H, Burst JM, Thornburg SN, Ventrice CA Jr., Zhang C, Redepenning J, Losovyj Y, Rosa L, Dowben PA, Doudin B (2003) Chem Phys Lett 381:7Google Scholar
  17. 17.
    Francis TL, Mermer O, Veeraraghavan G, Wohlgenannt M (2004) New J Phys 6:185Google Scholar
  18. 18.
    Salis G, Alvarado SF, Tschudy M, Brunschwiler T, Allenspach R (2004) Phys Rev B 70:085203Google Scholar
  19. 19.
    Tsymbal EY, Mryasov ON, LeClair PR (2003) J Phys Condens Mat 15:R109Google Scholar
  20. 20.
    Zutic I, Fabian J, Sarma SD (2004) Rev Modern Physics 76:323Google Scholar
  21. 21.
    Dowben PA, Doudin B (2005) In: Donath M, Nolting W (eds) Local Moment Ferromagnets: Unique Properties for Modern Applications, Lecture Notes in Physics 678, Springer-Verlag, ISBN No. 0075-8450, pp 309–326Google Scholar
  22. 22.
    Zhuravlev MYe, Tsymbal EY, Vedyayev AV (2005) Phys Rev Lett, 94: 127203Google Scholar
  23. 23.
    Cheng R, Caruso AN, Yuan L, Liou S-H, Dowben PA (2003) Appl Phys Lett 82:1443Google Scholar
  24. 24.
    Belashchenko KD, Tsymbal EY, van Schilfgaarde M, Stewart DA, Oleynik II, Jaswal SS (2004) Phys Rev B 69:174408Google Scholar
  25. 25.
    Belashchenko KD, Tsymbal EY, van Schilfgaarde M, Stewart DA, Oleynik II, Jaswal SS, (2004) J Magn Magn Mater 272–276:1954Google Scholar
  26. 26.
    Oleinik II, Tsymbal EY, Pettifor DG (2001) Phys Rev B 65:020401Google Scholar
  27. 27.
    Oleinik II, Tsymbal EY (2004) Interface Sci 12:105Google Scholar
  28. 28.
    Lukaszew RA, Sheng Y, Uher C, Clarke R (1999) Appl Phys Lett 75:1941Google Scholar
  29. 29.
    Gustavsson F, George JM, Etgens VH, Eddrief M (2001) Phys Rev B 64:184422Google Scholar
  30. 30.
    Hunziker M, Landolt M (2000) Phys Rev Lett 84:4713Google Scholar
  31. 31.
    Walser P, Hunziker M, Speck T, Landolt M (1999) Phys Rev B 60:4082Google Scholar
  32. 32.
    Walser P, Hunziker M, Landolt M, (1999)J Magn Magn Mat 200:95Google Scholar
  33. 33.
    Mavropoulos Ph, Papanikolaou N, Dederichs PH (2000) Phys Rev Lett 85:1088Google Scholar
  34. 34.
    Tanaka M, Higo Y (2001) Phys Rev Lett 87:026602Google Scholar
  35. 35.
    Petukhov AG, Chantis AN, Demchenko DO (2002) Phys Rev Lett 89, art. no. 107205Google Scholar
  36. 36.
    Yoshimura S, Shoyama T, Nozawa T, Tsunoda M, Takahashi M (2004) IEEE Trans Magnet 40:1Google Scholar
  37. 37.
    Sharma M, Nickel JH, Anthony TC, Wang SX (2000) Appl Phys Lett 77:2219Google Scholar
  38. 38.
    Bernard L, Monson J, Sokolov A, Liu Zong-Yuan, Yang C-S, Dowben PA, Doudin B, Harken A, Welsch P, Robertson BW (2003) Appl Phys Lett 83:3743Google Scholar
  39. 39.
    LeClair P, Ha JK, Swagten HJM, Kohlhepp JT, van de Vin CH, de Jonge WJM (2002) Appl Phys Lett 80:625Google Scholar
  40. 40.
    Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C (1995) Phys Rev Lett 75:3918Google Scholar
  41. 41.
    Nagashima A, Tejima N, Gamou Y, Kawai T, Oshima C (1996) Surf Sci 358:307Google Scholar
  42. 42.
    Grad GB, Blaha P, Schwarz K, Auwarter W, Greber T (2003) Phys Rev B 68, art. no. 085404Google Scholar
  43. 43.
    Oshima C, Nagashima A (1997) J Phys Cond Matter 9:1Google Scholar
  44. 44.
    Nagashima A, Tejima N, Gamou Y, Kawai T, Terai M, Wakabayashi M, Oshima C (1996) Int J Modern Phys B 10:3517Google Scholar
  45. 45.
    Greber T, Auwarter W, Hoesch M, Grad G, Blaha P, Osterwalder J (2002) Surf Rev Lett 9:1243Google Scholar
  46. 46.
    Dowben PA, Jenkin SJ (2005) In: A. Narlikar (ed) Frontiers in magnetic materials, Springer VerlagGoogle Scholar
  47. 47.
    Tsymbal EY, Pettifor DG (1997) J Phys Condens Mat 9:L411Google Scholar
  48. 48.
    Pflaum J, Bracco G, Schreiber F, Colorado Jr. R, Shmakora OE, Lee TR, Scoles G, Kahn A (2002) Surf Sci 498:89Google Scholar
  49. 49.
    Hong S, Reifenberger R, Tian W, Datta S, Henderson J, Kubiak CP (2000) Superlattices Microstruct 28:289Google Scholar
  50. 50.
    Robertson N, McGowan CA (2003) Chem Soc Rev 32:96Google Scholar
  51. 51.
    Reed MA, Takhee L (eds) (2003) In: Molecular nanoelectronics, American Scientific Publishers, Stevenson Ranch, CaliforniaGoogle Scholar
  52. 52.
    Kagan CR, Ratner MA (2004) MRS Bull 29:376Google Scholar
  53. 53.
    Reed MA (2001) MRS Bull 26:113Google Scholar
  54. 54.
    Dowben PA, Jaewu C, Morikawa E, Bo Xu (2002) In: Nalwa HS (ed) Handbook of thin films, vol 2. Characterization and spectroscopy of thin films, Chapter 2, Academic Press, p 61–114Google Scholar
  55. 55.
    Zharnikov M, Grunze M (2001) J Phys Condens Matt 13:11333Google Scholar
  56. 56.
    Zharnikov M, Grunze M (2002) J Vac Sci Technol B 20:1793Google Scholar
  57. 57.
    Weckenmann U, Mittler S, Naumann K, Fischer RA (2002) Langmuir 18:5479Google Scholar
  58. 58.
    Azzam W, Wehner BI, Fischer RA, Terfort A, Wöll C (2002) Langmuir 18:7766Google Scholar
  59. 59.
    Henderson JI, Feng S, Ferrence GM, Bein T, Kubiak CP (1996) Inorg Chimica Acta 242:115Google Scholar
  60. 60.
    Rong H-T, Frey S, Yang YJ, Zharnikov M, Buck M, Wühn M, Wöll Ch, Helmchen G (2001) Langmuir 17:1582Google Scholar
  61. 61.
    Henderson JI, Feng S, Bein T, Kubiak CP (2002) Langmuir 16:6183Google Scholar
  62. 62.
    Cygan MT, Dunbar TD, Arnold JJ, Bumm LA, Shedlock NF, Burgin TP, Jones L II, Allara DL, Tour JM, Weiss PS (1998) J Am Chem Soc 120:2721Google Scholar
  63. 63.
    Frey S, Stadler V, Heister K, Eck W, Zharnikov M, Grunze M (2001) Langmuir 17:2408Google Scholar
  64. 64.
    Shaporenko A, Adlkofer K, Johansson LSO, Ulman A, Grunze M, Tanaka M, Zharnikov M (2004) J Phys Chem B 108:17964Google Scholar
  65. 65.
    Tai Y, Shaporenko A, Rong H-T, Buck M, Eck W, Grunze M, Zharnokov M (2004) J Phys Chem B 108:16806Google Scholar
  66. 66.
    Shaporenko A, Brunnbauer M, Terfort A, Grunze M, Zharnokov M (2004) J Phys Chem B 108:14462Google Scholar
  67. 67.
    Shaporenko A, Adlkofer K, Johansson LSO, Tanaka M, Zharnokov M (2003) Langmuir 19:4992Google Scholar
  68. 68.
    Caruso AN, Rajesh R, Gallup G, Redepenning J, Dowben PA (2004) J Phys: Condens Matter 16:845Google Scholar
  69. 69.
    Schön JH, Meng H, Bao Z (2001) Nature 413:713Google Scholar
  70. 70.
    Schön JH, Meng H, Bao Z (2001) Science 294:2138Google Scholar
  71. 71.
    Datta S, Tian W, Hong S, Reifenberger R, Henderson JI, Kubiak CP (1997) Phys Rev Lett 79:2530Google Scholar
  72. 72.
    Rochefort A, Martel R, Avouris Ph (2002) Nanoletters 2:877Google Scholar
  73. 73.
    Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Rev Mod Phys 64:1045Google Scholar
  74. 74.
    Kresse G, Hafner J (1993) Phys Rev B 47:558Google Scholar
  75. 75.
    Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15Google Scholar
  76. 76.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671Google Scholar
  77. 77.
    Vanderbilt D (1990) Phys Rev B 41:7892Google Scholar
  78. 78.
    Caruso AN, Rajesh R, Gallup G, Redepenning J, Dowben PA (2004) J Phys Chem B 108:6910Google Scholar
  79. 79.
    Shinn ND (1990) Phys Rev B 41:9771Google Scholar
  80. 80.
    Shinn ND, Tsang K-L (1990) J Vac Sci Technol A 8:2449Google Scholar
  81. 81.
    Vargas MC, Giannozzi P, Selloni A, Scoles G (2001) J Phys Chem B 105:9509Google Scholar
  82. 82.
    Hayashi T, Morikawa Y, Nozoye H (2001) J Chem Phys 114:7615Google Scholar
  83. 83.
    Wang LG, Tsymbal EY, Jaswal SS (2004) Phys Rev B 70:075410Google Scholar
  84. 84.
    Kondoh H, Iwasaki M, Shimada T, Amemiya K, Yokoyama T, Ohta T, Shimorura M, Kono S (2003) Phys Rev Lett 90:066102Google Scholar
  85. 85.
    Roper MG, Skegg MP, Fisher CJ, Lee JJ, Dhanak VR, Woodruff DP, Jones RG (2004) Chem Phys Lett 389:87Google Scholar
  86. 86.
    Oleinik II, Tsymbal EY, Pettifor DC (2000) Phys Rev B 62:3952Google Scholar
  87. 87.
    Mazin II (1999) Phys Rev Lett 83:1427Google Scholar
  88. 88.
    Mazin II (2001) Europhys Lett 55:404Google Scholar
  89. 89.
    Mazin II (2000) Appl Phys Lett 77:3000Google Scholar
  90. 90.
    Shishidou T, Freeman AJ, Asahi R (2001) Phys Rev B 64, art. no. 180401Google Scholar
  91. 91.
    Burdett JK (1984) Progr Sol St Chem 15:173Google Scholar
  92. 92.
    Plummer EW, Tonner B, Holzwarth N, Liebsch A (1980) Phys Rev B 21:4306Google Scholar
  93. 93.
    Dowben PA (1987) CRC Crit Rev Solid State Mater Sci 13:191Google Scholar
  94. 94.
    Da Silva JLF, Stampfl C, Scheffler M (2003) Phys Rev Lett 90, art. no. 066104 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • A. N. Caruso
    • 1
  • L. G. Wang
    • 1
  • S. S. Jaswal
    • 1
  • E. Y. Tsymbal
    • 1
  • P. A. Dowben
    • 1
  1. 1.Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, Behlen Laboratory of PhysicsUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations