Advertisement

Journal of Materials Science

, Volume 41, Issue 18, pp 5815–5819 | Cite as

Synthesis of Mg-α-sialon from the mixture of silicon, aluminum and magnesia powders in a flowing nitrogen atmosphere

  • Yawei Li
  • Shaobai Sang
  • Shengli Jin
  • Chunyan Yang
  • Nan Li
Article
  • 100 Downloads

Abstract

Synthesis of Mg-α-Sialon has been investigated by the mixture of silicon, aluminum and magnesia powders in a flowing nitrogen atmosphere in the range of 1300–1600 °C, when Mg-α-Sialon is designed with a chemical formulation of MgxSi12−3xAl3xOxN16−x in present work. The results showed that Mg-α-sialon initially occurred at 1400 °C and basically increased with elevated temperatures. For the samples of = 0.6, 0.8 and 1.0 the products mainly consisted of Mg-α-Sialon with small amounts of Si, AlN and 21R AlN-polytypoid phases at 1600° C. However, in final products of = 1.2, 1.4 and 1.6 only a little of Mg-α-Sialon formed and a great amount of Si remained in these samples at all the fired temperatures. Fortunately, the content of Mg-α-Sialon in these samples were obviously increased by adding a small amount of α-Si3N4 as seeds before nitridation.

Keywords

Carbothermal Reduction Sialon Transient Liquid Phase Nitridation Process Magnesia Powder 

Notes

Acknowledgements

This research work was financially supported by the Educational Department of Hubei Province.

References

  1. 1.
    Jack KH, Wilson WI (1972) Nat Phys Sci (London) 238:28CrossRefGoogle Scholar
  2. 2.
    Thompson DP (1989) Mater Sci Forum 47:21CrossRefGoogle Scholar
  3. 3.
    Mandal H (1999) J Eur Ceram Soc 19:2349CrossRefGoogle Scholar
  4. 4.
    Hampshire S., Park HK, Thompson DP, Jack KH (1978) Nature 274:880CrossRefGoogle Scholar
  5. 5.
    Mackenzie JDK, Temuujin J, Smith M, Okada K, Kameshima Y (2003) J Eur Ceram Soc 23:1069CrossRefGoogle Scholar
  6. 6.
    Ekström T, Shen ZJ, Mackenzie JDK, Brown IWM, White GV (1998) J Mater Chem 4:977CrossRefGoogle Scholar
  7. 7.
    Qiu JY, Tatami J, Zhang C, Komeya K, Meguro T, Chen YB (2002) J Eur Ceram Soc 22:2989CrossRefGoogle Scholar
  8. 8.
    Zhang C, Komeya K, Tatami J, Meguro T, Chen YB, (2000) J Eur Ceram Soc 20:1809CrossRefGoogle Scholar
  9. 9.
    Wang PL, Zhang C, Sun WY, Yan DS (1999) Mater Lett 38:178CrossRefGoogle Scholar
  10. 10.
    Wang PL, Li YW, Sun WY, Yan DS (2000) J Eur Ceram Soc 20:1333CrossRefGoogle Scholar
  11. 11.
    Zhang W, Liu W, Yu L (2000) Tribol Int 33:769CrossRefGoogle Scholar
  12. 12.
    Wang PL, Li YW, Yan DS (2000) J Mater Sci 35:1585CrossRefGoogle Scholar
  13. 13.
    Wang PL, Sun WY, Yan DS (2000) J Eur Ceram Soc 20:23CrossRefGoogle Scholar
  14. 14.
    Zhou YP, Zhuang HR, Wen SL (1999) J Chin Inorg Mater 14(1):185Google Scholar
  15. 15.
    Izhevskiy VA, Genova LA, Bressiani JC, Aldinger F (2000) J Eur Ceram Soc 20:2275CrossRefGoogle Scholar
  16. 16.
    Hwang SL, Chen IW (1994) J Am Ceram Soc 77:1711CrossRefGoogle Scholar
  17. 17.
    Xu FF, Wen SL (1997) J Eur Ceram Soc 17:1631CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Yawei Li
    • 1
  • Shaobai Sang
    • 1
  • Shengli Jin
    • 1
  • Chunyan Yang
    • 1
  • Nan Li
    • 1
  1. 1.Hubei Province Key Laboratory of Ceramics and RefractoriesWuhan University of Science and TechnologyWuhanP. R. China

Personalised recommendations