Advertisement

Journal of Materials Science

, Volume 41, Issue 14, pp 4695–4697 | Cite as

Dissociation of super-dislocations and the SISF energy in γ-TiAl based alloy with Nb-doping, as studied by HRTEM

  • Y. Yuan
  • K. B. Yin
  • X. N. Zhao
  • X. K. Meng
  • Z. G. LiuEmail author
Article

Abstract

The dissociation of super-dislocations in γ-TiAl in Nb-doped Ti-48 at.% Al-5 at.% Nb has been studied by high resolution transmission electron microscopy (HRTEM). The SISF energy in γ-TiAl in Ti-48 at.% Al-5 at.% Nb was calculated to be 35 mJ/m2 according to the dissociation width. It is concluded that Nb addition may affect the electronic structure of TiAl and furthermore decrease SF energies in TiAl alloys, which is partly responsible for the strengthening effect of Nb-doping.

Keywords

High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Burger Vector Stack Fault Energy Critical Resolve Shear Stress 

Notes

Acknowledgements

This work was jointly supported by the Chinesisch-Deutsches Zentrum für Wissenschaftsförderung (Beijing) and National Basic Research Program of China through Grant No.2004CB619305. The authors would like to thank Dr. J.G. Zheng. and Dr. G.H. Cao for their help and enlightening discussions.

References

  1. 1.
    Denquin A, Naka S (1996) Acta Mater 44:343CrossRefGoogle Scholar
  2. 2.
    Kawabata T, Fukai H, Izumi O (1998) Acta Mater 46:2185CrossRefGoogle Scholar
  3. 3.
    Wang JN, Zhu J, Wu JS, Du XW (2002) Acta Mater 50:1307CrossRefGoogle Scholar
  4. 4.
    Zghal S, Thomas M, Naka S, Finel A, Couret A (2005) Acta Mater 53:2653CrossRefGoogle Scholar
  5. 5.
    Appel F, Wagner R (1998) Mater Sci Eng R 22:187CrossRefGoogle Scholar
  6. 6.
    Yamaguci M, Inui H, Ito K (2000) Acta Mater 48:307CrossRefGoogle Scholar
  7. 7.
    Appel F, Oehring M, Wagner R (2000) Intermetallics 8:1283CrossRefGoogle Scholar
  8. 8.
    Zheng JG, Li Q, Liu ZG, Feng D, Frommeyer G (1994) Phys Lett A 196:125CrossRefGoogle Scholar
  9. 9.
    Viswanathan GB, Vasudevan VK (1995) Scripta Mater 32:1705CrossRefGoogle Scholar
  10. 10.
    Paul JDH, Appel F, Wagner R (1998) Acta Mater 46:1075CrossRefGoogle Scholar
  11. 11.
    Tetsui T, (2002) Intermetallics 10:239CrossRefGoogle Scholar
  12. 12.
    Zhang WJ, Chen GL, Appel F, Nieh TG, Deevi SC (2001) Mater Sci Eng A 315:250CrossRefGoogle Scholar
  13. 13.
    Zhang WJ, Appel F (2002) Mater Sci Eng A 329–331:649CrossRefGoogle Scholar
  14. 14.
    Zhang WJ, Appel F (2002) Mater Sci Eng A 334:59CrossRefGoogle Scholar
  15. 15.
    Song XP, Chen GL (2001) J Mater Sci lett 20:659CrossRefGoogle Scholar
  16. 16.
    Zhang YG, Han YF, Chen GL, Guo JT, Wan XJ, Feng D (2001) In: Structural intermetallics, National Defense Industry Press, Beijing, p 190Google Scholar
  17. 17.
    Aerts E, Delavignette P, Siems R, Amelinckx S (1962) J Appl Phys 33:3078CrossRefGoogle Scholar
  18. 18.
    Yoo MH, Fu CL (1998) Metall Mater Trans 29A:49CrossRefGoogle Scholar
  19. 19.
    Cui XY, Yang JL, Li QX, Xia SD, Wang CY (1999) J Phys: Condens Matter 11:6179Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Y. Yuan
    • 1
  • K. B. Yin
    • 1
  • X. N. Zhao
    • 1
  • X. K. Meng
    • 1
  • Z. G. Liu
    • 1
    Email author
  1. 1.Laboratory of Solid State MicrostructuresNanjing UniversityNanjing P. R. China

Personalised recommendations