Journal of Materials Science

, Volume 41, Issue 17, pp 5548–5555 | Cite as

Investigations on the high cycle fatigue behaviour of stir cast AA 6061-SiCp composites

  • K. MahadevanEmail author
  • K. Raghukandan
  • T. Senthilvelan
  • B. C. Pai
  • U. T. S. Pillai


The room temperature high cycle fatigue behaviour of stir cast AA 6061-SiCp composites, with varying reinforcement percentage, is studied. The specimens were tested under fully reversed cyclic deformation in the peak aged condition. Composite with 20% reinforcement exhibit superior fatigue strength over other composites (with 10,15 and 25% reinforcement). The experimental results are correlated with scanning electron micrographs of the failed specimens. Two distinct morphologies namely, crack initiation/ propagation and fast fracture region, were present. Mode-I type cracking was found to have dominated the crack initiation. The final fracture mode was found to be ductile with nucleation, growth and coalescence of cracks in the matrix.


Fatigue Crack Initiation Fatigue Strength High Cycle Fatigue High Cycle Fatigue 



This research was supported by the Council of Scientific and Industrial Research, India (CSIR GRANT NO.70/(0043)/01/EMR-II). The authors are thankful to the Materials Processing Division, Regional Research Laboratory, Thiruvananthapuram, India for providing the materials used in this research work.


  1. 1.
    Mahadevan K, Raghukandan K, Venkatraman A, Pai BC, Pilai UTS (2003) Mat Sci Forum 437–438:223CrossRefGoogle Scholar
  2. 2.
    Raghukandan K, Hokamoto K, Lee JS, Chiba A, Pai BC (2003) J Mat Sci Tech 19(4):341Google Scholar
  3. 3.
    Hashin J, Looney L, Hahmi MSJ (1999) J Mat Proc Tech 92–93:01CrossRefGoogle Scholar
  4. 4.
    Pai BC, Pillai RM, Sathyanaranan KG, Sukumaran K, Pillai UTS, Pillai SGK, Ravikumar KU (2001) Met Mat Proc 13(2–4):225Google Scholar
  5. 5.
    Subrata R (1995) Bull Mater Sci 18(b):693Google Scholar
  6. 6.
    Chitoshi M, Tanaka Y, (1992) J Mat Sci 27:413CrossRefGoogle Scholar
  7. 7.
    Shinji K, King JE, Knott JF (1991) Mat Sci Engg A146:317Google Scholar
  8. 8.
    Hurd NJ (1998) Mat Sci Tech 4:513CrossRefGoogle Scholar
  9. 9.
    Poza P, Lorca L (1999) Met Mater Tran A 30A:857Google Scholar
  10. 10.
    Chawla N, Habel U, Shen YL, Andres C, John JW, Allison JE (2000) Met Mater Tran A 31A:531CrossRefGoogle Scholar
  11. 11.
    Hall J, Johns TW, Sachdew (1994) Mater Sci Engg A A183:69CrossRefGoogle Scholar
  12. 12.
    Han NL, Wang IG, Sun L (1995) Scripta Metall Mater 33:781CrossRefGoogle Scholar
  13. 13.
    Bonnen JJ, Allison JE, Jones JW (1991) Met Mater Tran A 22A:1007CrossRefGoogle Scholar
  14. 14.
    Vaidya AR, Lewandowski JJ (1996) Mater Sci Engg A A220:85CrossRefGoogle Scholar
  15. 15.
    Chen EY, Lawson L, Meshii N (1995) Mater Sci Engg A A200:192CrossRefGoogle Scholar
  16. 16.
    Chawla N, Andres C, Jones JW, Allison JE (1998) Metall Matrix Trans A 29A:2843CrossRefGoogle Scholar
  17. 17.
    Lorca L, Blayce A, Yue TM (1991) Mater Sci Engg A134:247CrossRefGoogle Scholar
  18. 18.
    Shang JK, Pitchie RO (1989) In: Arsenault RJ, Everette RK (eds) Metal matrix composites. Academic Press, Boston, MA, USA, p 255Google Scholar
  19. 19.
    Vyketek GM, Vanaken DC, Allison JE (1995) Met Mater Trans A 26A:3155Google Scholar
  20. 20.
    Mahadevan K, Rahukandan K, Senthilvelan T, Pai BC, Pillai UTS (2005) Mater Sci Engg A 396:188CrossRefGoogle Scholar
  21. 21.
    Chang R, Morries WL, Buck O (1979) Scripta Mater 13:191CrossRefGoogle Scholar
  22. 22.
    Williams DR, Fine ME (1985) In: Harrigan WC, Strige J, Dhingra AK (eds) Proceedings of the IV International Conference on Composite Materials. TMS, PA, USA, p 639Google Scholar
  23. 23.
    Harris SJ (1988) Mater Sci Tech 4:231CrossRefGoogle Scholar
  24. 24.
    Lloyd DJ (1994) Int Mater Rev 39:1CrossRefGoogle Scholar
  25. 25.
    Davis LC (1991) Met Mater Trans A 22A:3065CrossRefGoogle Scholar
  26. 26.
    Arsenault RJ, Wu SB (1988) Scripta Metall 22:767CrossRefGoogle Scholar
  27. 27.
    Allison IE, Davis LC, Jones JW (1997) In: Composites engineering handbook. Marcel Decker, NY, p 441Google Scholar
  28. 28.
    Nardone VC, Prewo KM (1986) Scripta Metall 20:43CrossRefGoogle Scholar
  29. 29.
    Nardone VC, Prewo KM (1989) Scripta Metall 23:291CrossRefGoogle Scholar
  30. 30.
    Parker BA (1989) In: Treatise on materials science and technology. Academic Press, Boston, USA, p 539Google Scholar
  31. 31.
    Johannesson B, Ogin SL, Sakiropoulos T (1991) In: Metal matrix composites-processing, microstructure and properties. Riso National Laboratory, Roskilde, Denmark, p 411Google Scholar
  32. 32.
    Allison JE, Jones JW (1993) In: Fundamentals of metal matrix composites. Butterworth-Heinemann, Stonehanns, MA, USA, p 269CrossRefGoogle Scholar
  33. 33.
    Meyers, MA, Chawla KK (1999) In: Mechanical behaviour of materials. Prentice Hall, NJ, USA, p 493Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • K. Mahadevan
    • 1
    Email author
  • K. Raghukandan
    • 2
  • T. Senthilvelan
    • 1
  • B. C. Pai
    • 3
  • U. T. S. Pillai
    • 3
  1. 1.Department of Mechanical EngineeringPondicherry Engineering CollegePondicherryIndia
  2. 2.Department of Manufacturing EngineeringAnnamalai UniversityAnnamalai NagarIndia
  3. 3.Metals Processing DivisionRegional Research LaboratoryThiruvananthapuramIndia

Personalised recommendations