Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5576–5586 | Cite as

Texture evolution during deformation of an Al-6%Cu-0.4%Zr superplastic alloy

  • M. Eddahbi
  • M. CarsÍ
  • O. A. Ruano
Article

Abstract

Texture measurements of the as-received rolled Al-6%Cu-0.4%Zr alloy revealed that a copper component, {311}<233>, is developed at the surface and a S component, {631}<113>, is formed at the middle of the sheet. During early stages of superplastic deformation at 480 °C/5×10−4 s−1 the intensity of the Cu component increases slightly whereas the S component changes toward the brass component Bs, {110}<112>, by a slip process. For larger strains, both components decrease by a grain boundary sliding mechanism.

Keywords

Pole Figure Strain Rate Sensitivity Orientation Distribution Function Rolled Sheet Grain Boundary Slide 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the Comisión Interministerial de Ciencia y Tecnología (CICYT) under Grant MAT2003-1172 and MAT2000-2017. One of the authors (M Eddahbi) thank the Grant 345/2000 from the Comunidad Autónoma de Madrid.

References

  1. 1.
    Hirsch J, Lücke K (1988) Acta Metall 36:2883CrossRefGoogle Scholar
  2. 2.
    Engler O, Hirsch J, Lücke K (1989) Acta Metall 37:2743CrossRefGoogle Scholar
  3. 3.
    Hirsch J (1990) Mater Sci Technol 6:1048CrossRefGoogle Scholar
  4. 4.
    Lücke K, Engler O (1990) Mater Sci Technol 6:1113CrossRefGoogle Scholar
  5. 5.
    Lee CS, Duggan BJ (1993) Acta Metall Mater 41:2691CrossRefGoogle Scholar
  6. 6.
    Ren B, Morris JG (1995) Metall Trans 26A:31CrossRefGoogle Scholar
  7. 7.
    Bowen AW (1990) Mater Sci Technol 6:1058CrossRefGoogle Scholar
  8. 8.
    Doherty D, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, King WE, Mcnelley TR, Mcqueen HJ, Rollet AD (1997) Mater Sci Eng 238A:219CrossRefGoogle Scholar
  9. 9.
    Kashyap BP, Fan W, Chaturvedi MC (2001) Mater Sci Technol 17:248CrossRefGoogle Scholar
  10. 10.
    Gourdet S, Montheillet F (2000) Mater Sci Eng 283A:274CrossRefGoogle Scholar
  11. 11.
    Kalu PN (1993) In: Jonas JJ, Bieler TR, Bowman KJ (eds) Advances in hot deformation textures and microstructures, Pittsburgh. TMS publications, p 349Google Scholar
  12. 12.
    Pérez-Prado MT, Cristina MC, Torralba M, Ruano OA, Gónzalez-Doncel G (1996) Scripta Mater 35:1455CrossRefGoogle Scholar
  13. 13.
    Blackwell PL, Bate PS (7–8 December 1994) In: Norman Ridley (ed) 60 years after Pearson, Proceedings of the Conference on Superplastic Forming, London,The Institute of Materials p 183Google Scholar
  14. 14.
    Blackwell PL, Bate PS (1993) Metall Trans 24A:1085CrossRefGoogle Scholar
  15. 15.
    Barlat F, Brem JC, Liu J (1992) Scripta Metall Mater 27:1121CrossRefGoogle Scholar
  16. 16.
    Eddahbi M (1998) Ph.D, Thesis, Universidad Complutense de MadridGoogle Scholar
  17. 17.
    Padmanabhan KA, Hirsh J, Lücke K (1991) J Mater Sci 26:5309CrossRefGoogle Scholar
  18. 18.
    Martin CF, Blandin JJ, Salvo L (2001) Mater Sci Eng 297:212CrossRefGoogle Scholar
  19. 19.
    Qing L, Xiaoxu H, Mei Y, Jinfeng Y (1992) Acta Metall Mater 40:1753CrossRefGoogle Scholar
  20. 20.
    Sakai T, Yang X, Miura H (1997) Mater Sci Eng A234–236:857CrossRefGoogle Scholar
  21. 21.
    Matsuki K, Iwaki T, Tokizawa M, Murakami Y (1991) Mater Sci Technol 7:513CrossRefGoogle Scholar
  22. 22.
    Bunge HJ (1982) Texture analysis in materials science, ButterworthsGoogle Scholar
  23. 23.
    Inoue H, Takasugi T (2001) Z Metallkd 92:82Google Scholar
  24. 24.
    Eddahbi M, Mcnelley TR, Ruano OA (2000) Metall Trans 32A:1093Google Scholar
  25. 25.
    Kuo VWC, Starke EA, Jr. (1985) Metall Trans 16A:1089CrossRefGoogle Scholar
  26. 26.
    Engler O, Sachot E, Ehrström JC, Reeves A, Shahani R (1996) Mater Sci Technol 12:717CrossRefGoogle Scholar
  27. 27.
    Fan W, Kashyap BP, Chaturvedi MC (2001) Mater Sci Technol 17:431CrossRefGoogle Scholar
  28. 28.
    Matsuki K, Uetani Y, Yamada M, Murakami Y (1976) Met Sci 10:235lCrossRefGoogle Scholar
  29. 29.
    Humphreys FJ (1977) Acta Metall 25:1323CrossRefGoogle Scholar
  30. 30.
    Humphreys FJ (1979) Acta Metall 27:1801CrossRefGoogle Scholar
  31. 31.
    Humphreys FJ (2000) Scripta Metall Mater 43:591CrossRefGoogle Scholar
  32. 32.
    Lee EW, Mcnelley TR (1987) Mater Sci Eng 93A:45CrossRefGoogle Scholar
  33. 33.
    Ridley N (1990) Mater Sci Eng 6:1145Google Scholar
  34. 34.
    Sohal GS (1988) Mater Sci Technol 4:811CrossRefGoogle Scholar
  35. 35.
    Jiang XG, Earthman JC, Mohamed FA (1994) J Mater Sci 29:5499CrossRefGoogle Scholar
  36. 36.
    Padmanabhan KA, Engler O, Lücke K (1996) J Mater Sci 31:3971CrossRefGoogle Scholar
  37. 37.
    Mizera J, Driver JH (1999) Mater. Sci. Eng. A271:334CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Departamento de Metalurgia FísicaCentro Nacional de Investigaciones MetalúrgicasMadridSpain

Personalised recommendations