Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5687–5695 | Cite as

A new shear technique: Semi Continuous Shear Flow (SCSF) in medium and ultra high molecular weight Polyhydroxybutyrate blends

  • Lakshmi Sharma
  • Yoshino Ogino
  • Toshiji Kanaya
  • Tadahisa Iwata
  • Yoshiharu Doi
Article

Abstract

In MMWT/UHMWT PHB blends (99.5/0.5), (99/1), (98/2) and (97/3) we demonstrate that by applying our new shear technique, “semi continuous shear flow”, copious fibre formation is guaranteed, irrespective of the ultra high molecular weight composition. The shishes formed via this technique are extremely stable being able to maintain their stability for at least 5–10 min. When this technique was applied to MMWT/UHMWT PHB blends of compositions (95/5), (90/10) and (85/15) disorientated fibres were observed in the flow direction. On increasing the UHMWT component, distinct unordered and intertwining of fibres resulted and with severe shearing orientation occurred, however shish formation was limited. We propose the optimum conditions for shish formation and the critical molecular weight necessary for entanglement.

Keywords

Shear Flow Fibre Formation Initial Shear Ultra High Molecular Weight Polyhydroxybutyrate 

Notes

Acknowledgements

The authors are extremely indebted to and would like to thank JSPS, Japan and The Royal Society, UK for the awarded JSPS fellowship to Dr Lakshmi Sharma.

References

  1. 1.
    Ray AR, Sharma RJ (1995) Macromol Sci Rev Macromol Phys 35:327CrossRefGoogle Scholar
  2. 2.
    Doi Y (1990). Microbial polyesters, 1st edn. VCH Publishers, New YorkGoogle Scholar
  3. 3.
    De Konig GJM, Lemstra PJ (1992) Polymer 33:3295CrossRefGoogle Scholar
  4. 4.
    De Konig GJM, Lemstra PJ (1993) Polymer 34:4089CrossRefGoogle Scholar
  5. 5.
    Hay JN, Harris A, Biddlestone F, Hammond T (1996) Polym Int 35:4598Google Scholar
  6. 6.
    Hay JN, Sharma L (2000) Polymer 41: 5749CrossRefGoogle Scholar
  7. 7.
    Sharma L, Ogino Y, Kanaya T (2004) Macro Mater Eng 289:1059CrossRefGoogle Scholar
  8. 8.
    Sharma L, Ogino Y, Kanaya T, Iwata T, Doi Y (2004) Macrol Mater Eng 289:1068CrossRefGoogle Scholar
  9. 9.
    Kumaraswamy G, Issaian AM, Kornfield JA (1999) Macromolecules 22:7537CrossRefGoogle Scholar
  10. 10.
    Kumaraswamy G, Varma RK, Issaian AM, Kornfield JA, Yeh F, Hsiao BS (2001) Polymer 41:8931CrossRefGoogle Scholar
  11. 11.
    Nogales A, Hsiao BS, Somani RH, Srinivas S, Tsou AH, Balta Calleja FJ, Ezquerra TA (2001) Polymer 42:5247CrossRefGoogle Scholar
  12. 12.
    Vleeshouwers S, Hmeijer EH (1996) Rheol Acta 35:391CrossRefGoogle Scholar
  13. 13.
    Moitzi J, Skalicky P (1993) Polymer 34:3168CrossRefGoogle Scholar
  14. 14.
    Tribout T, Monasse B, Haudin FJ (1996) Colloid Polym Sci 274:197CrossRefGoogle Scholar
  15. 15.
    Haudin FJ, Monasse B (1999) J Mater Sci 34:2089CrossRefGoogle Scholar
  16. 16.
    Misra S, Lu FM, Spruiell JE, Richeson GC (1995) J Appl Polym Sci 56:1761CrossRefGoogle Scholar
  17. 17.
    Sherwood P, Price F, Stein R (1978) J Polym Sci 63:77Google Scholar
  18. 18.
    Lagasse R, Maxwell B (1978) Polym Eng Sci 18:215CrossRefGoogle Scholar
  19. 19.
    Wolkowicz M (1978) J Appl Polym Sci 63:365Google Scholar
  20. 20.
    Kusaka S, Abe H, Lee SY, Doi Y (1997) Appl Microbiol Biotechnol 47:140CrossRefGoogle Scholar
  21. 21.
    Iwata T, Aoyagi Y, Fujita M, Yamane H, Doi Y, Suzuki Y, Takeuchi A, Uesugi K (2004) Macromol Rapid Commun 25:1100CrossRefGoogle Scholar
  22. 22.
    Keller A, Machin MJ (1967) Macromol J Sci Phys Ed (B) 1:41CrossRefGoogle Scholar
  23. 23.
    Keller A, Kolnaar WHH (1997) In: Processing of polymers, 1st edn, vol. 18. pp 189–268 (chap. 4) Google Scholar
  24. 24.
    Jerschow P, Janeschitz-Kriegl H (1996) Rheol Acta 35:127CrossRefGoogle Scholar
  25. 25.
    Jerschow P, Janeschitz-Kriegl H (1997) Intern Polym Proc 12:72CrossRefGoogle Scholar
  26. 26.
    Hill MJ, Barham PJ, Keller A (1980) Colloid Polym Sci 258:1023CrossRefGoogle Scholar
  27. 27.
    Hill MJ, Keller A (1981) Colloid Polym Sci 259:335CrossRefGoogle Scholar
  28. 28.
    Hill MJ, Barham PJ, Keller A (1983) Colloid Polym Sci 261:721CrossRefGoogle Scholar
  29. 29.
    Binsbergen FL, Lange BG (1968) Polymer 9:23CrossRefGoogle Scholar
  30. 30.
    Hay JN, Keller A (1967) J Mater Sci 2:538CrossRefGoogle Scholar
  31. 31.
    Padden FJ, Keith HD (1966) J Appl Physics 37:4013CrossRefGoogle Scholar
  32. 32.
    Padden FJ, Keith HD (1973) J Appl Physics 44:1217CrossRefGoogle Scholar
  33. 33.
    Norton DR, Keller A (1985) Polymer 26:704CrossRefGoogle Scholar
  34. 34.
    Andersen PG, Carr SH (1975) J Mater Sci 10:870CrossRefGoogle Scholar
  35. 35.
    Lovinger AJ (1983) J Polym Sci Polym Phys Ed 21:97CrossRefGoogle Scholar
  36. 36.
    Dukovski I, Muthukumar M (2003) J Chem Phys 118:6648CrossRefGoogle Scholar
  37. 37.
    Graessley WW (1974) Polym Rheol Adv Polym Sci 16:124Google Scholar
  38. 38.
    Rubinstein M, Colby RH (1988) J Chem Phys 89:5291CrossRefGoogle Scholar
  39. 39.
    Colby RH, Rubinstein M, Viovy JL (1992) Macromolecules 25:996CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Lakshmi Sharma
    • 1
  • Yoshino Ogino
    • 1
  • Toshiji Kanaya
    • 1
  • Tadahisa Iwata
    • 2
  • Yoshiharu Doi
    • 2
  1. 1.Polymer Material Science Laboratory, Institute for Chemical ResearchKyoto UniversityKyoto, Uji CityJapan
  2. 2.Polymer Chemistry LaboratoryRIKEN Institute (The Institute of Physical and Chemical Research)Hirosawa, Wako-shi, SaitamaJapan

Personalised recommendations