Journal of Materials Science

, Volume 41, Issue 18, pp 5851–5856 | Cite as

Morphology and modulus of vapor grown carbon nano fibers

  • Tetsuya Uchida
  • David P. Anderson
  • Marilyn L. Minus
  • Satish KumarEmail author


Two types of morphologies have been observed in vapor grown carbon nano fibers (CNFs) using transmission electron microscopy (TEM). In one case, a truncated cone microstructure was observed, with outer and inner diameters of 60 and 25 nm, respectively. In this type of CNF, graphite sheets were oriented at about 15° to the fiber axis. The second type of fiber was a double-layer CNF with outer and inner diameters of 83 and 20 nm, respectively. A truncated cone structure was also observed in the double-layer CNF. Graphite sheets in the outer layer of the double-layer fibers were oriented along the nano fiber axis. Tensile modulus for the first type of nano fiber along its axis was calculated to be 50 GPa, and for the second type of fiber the calculated modulus value was in the 100–775 GPa range, depending on the outer layer orientation. Modulus calculations based on these two morphologies explain the wide ranging experimental CNF modulus values reported in the literature.


Graphene Plane High Resolution Transmission Electron Microscopy Composite Fiber Fiber Axis Hollow Core 



Partial support for this work from National Science Foundation, Air Force Office of Scientific Research (F49620-03-1-0124) and by the United States Air Force Research Laboratory at Wright-Patterson Air Force Base, OH (contract F33615-00-D-5006) is gratefully acknowledged.


  1. 1.
    Tibbetts GG, Devour MG (1986) U.S. patent 4,565,684Google Scholar
  2. 2.
    Lake ML, Ting JM (1999) In: Burchell TD (ed) Carbon materials for advanced technologies. Oxford, UK, p 139Google Scholar
  3. 3.
    De Jong KP, Geus JW (2000) Catal Rev Sci Eng 42:481CrossRefGoogle Scholar
  4. 4.
    Tibbetts GG, Beetz CP Jr (1987) J Phys D Appl Phys 20:292CrossRefGoogle Scholar
  5. 5.
    Gibson J, Riley HL, Taylor J (1944) Nature 154:544CrossRefGoogle Scholar
  6. 6.
    Koyama T (1972) Carbon 10:757CrossRefGoogle Scholar
  7. 7.
    Chemical Engineering, October (1957) 172–174Google Scholar
  8. 8.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  9. 9.
    Lau KT, Chipara M, Ling HY, Hui D (2004) Composites Part B 35:95CrossRefGoogle Scholar
  10. 10.
    Kumar S, Doshi H, Srinivasarao M, Park JO (2002) Polymer 43:1701CrossRefGoogle Scholar
  11. 11.
    Ma H, Zeng J, Realff ML, Kumar S, Schiraldi DA (2003) Comp Sci Tech 63:1617CrossRefGoogle Scholar
  12. 12.
    Zeng J, Saltysiak B, Johnson WS, Schiraldi AD, Kumar S (2004) Composites Part B 35:173CrossRefGoogle Scholar
  13. 13.
    Uchida T, Dang TD, Min BG, Zhang X, Kumar S (2005) Composites Part B 36:183CrossRefGoogle Scholar
  14. 14.
    Sandler J, Windle AH, Werner P, Altatädt V, Es MV, Shaffer MSP (2003) J Mater Sci 38:2135CrossRefGoogle Scholar
  15. 15.
    Li YL, Kinloch IA, Windle AH (2004) Science 304:276CrossRefGoogle Scholar
  16. 16.
    Zhang M, Atkinson KR, Baughman RH (2004) Science 306:1358CrossRefGoogle Scholar
  17. 17.
    Ericson LM, Fan H, Peng H, Davis VA, Zhou W, Sulpizio J, Wang Y, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE, Smalley RE (2004) Science 305:1447CrossRefGoogle Scholar
  18. 18.
    Kumar S, Dang TD, Arnold FE, Bhattacharayya AR, Min BG, Zhang X, Vaia RA, Park C, Adams WW, Hauge RH, Smalley RE, Ramesh S, Willis PA (2002) Macromolecules 35:9039CrossRefGoogle Scholar
  19. 19.
    Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH, Smalley RE (2004) Adv Mater 16:58CrossRefGoogle Scholar
  20. 20.
    Chae HG, Sreekumar TV, Uchida T, Kumar S (2005) Polymer 46:10925CrossRefGoogle Scholar
  21. 21.
    Heremans J, Beetz CP Jr (1985) Phys Rev B 32:1981CrossRefGoogle Scholar
  22. 22.
    Heremans J (1985) Carbon 23:431CrossRefGoogle Scholar
  23. 23.
    Endo M, Kim YA, Hayashi T, Nishmura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Carbon 39:1287CrossRefGoogle Scholar
  24. 24.
    Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Nat Mater 3:115CrossRefGoogle Scholar
  25. 25.
    Tibbetts GG (1989) Carbon 27:745CrossRefGoogle Scholar
  26. 26.
    Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higashi S, Dresselhaus MS (2002) Appl Phys Lett 80:1267CrossRefGoogle Scholar
  27. 27.
    Endo M, Kim YA, Hayashi T, Yanagisawa T, Muramatsu H, Ezaka M, Terrones H, Terrones M, Dresselhaus MS (2003) Carbon 41:1941CrossRefGoogle Scholar
  28. 28.
    Watt W, Perov BV (1985) In: Handbook of composites: strong fibers, vol 1. Elsevier, Amsterdam, p 392Google Scholar
  29. 29.
    Liu T, Kumar S (2003) Nano Lett 3(5):647CrossRefGoogle Scholar
  30. 30.
    Jacobsen RL, Tritt TM, Guth JR, Ehrlich AC, Gillespie DJ (1995) Carbon 33:1217CrossRefGoogle Scholar
  31. 31.
    Ting J (1999) J Mater Sci 34:229CrossRefGoogle Scholar
  32. 32.
    Ishioka M, Okada T, Matsubara K (1992) J Mater Res 7:3019CrossRefGoogle Scholar
  33. 33.
    Terrones H, Hayashi T, Munoz_Navia M, Terrones M, Kim YA, Grobert N, Kamalakaran R, Dorantes-Davia J, Escudero R, Dresselhaus MS, Endo M (2001) Chem Phys Lett 343:241CrossRefGoogle Scholar
  34. 34.
    Alexander LE (1969) In: X-ray diffraction methods in polymer science. Wiley-Interscience, John Wiley & Sons, Inc., New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Tetsuya Uchida
    • 1
    • 4
  • David P. Anderson
    • 3
  • Marilyn L. Minus
    • 2
  • Satish Kumar
    • 2
    Email author
  1. 1.Graduate School of Natural Science and TechnologyOkayama UniversityOkayamaJapan
  2. 2.School of Polymer, Textile and Fiber EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.University of Dayton Research InstituteDaytonUSA
  4. 4.Faculty of EngineeringOkayama UniversityOkayama Japan

Personalised recommendations