Journal of Materials Science

, Volume 41, Issue 17, pp 5504–5509 | Cite as

New aspects of the βα polymorphic transition in plastically deformed isotactic polypropylene studied by microindentation hardness

  • M. Boyanova
  • F. J. Balta Calleja
  • S. Fakirov


The βα polymorphic transition in plastically deformed isotactic polypropylene (iPP) was characterized by means of microindentation hardness. For this purpose microindentations were mapped onto the surface of the necking zone of a tensile loaded injection molded β-iPP “dumb-bell” specimen. Results evidence a sharp decrease of the H-values instead of the expected H-increase due to the βα polymorphic transition. Far away from the necking zone an H-increase is detected. It is shown that the destruction of the starting isotropic spherulitic structure and the decrease of crystallinity in the necking zone gives rise to lower H-values. However, at larger distances from the neck, the emerging fibre structure induces a better chain orientation that results in a slight H-increase. Analysis of the isotropic and necked samples before and after their annealing using DSC and WAXS supports the assumption regarding the role of the microvoids in decreasing the hardness value.


iPP β–α transition Microhardness WAXS DSC 



Grateful acknowledgement is due to the MEC, Spain (Grant FIS2004-013314) for the generous support of this investigation. One of us (S.F.) deeply appreciates the financial support of NATO—Spain for the award of a fellowship making possible his stay at Instituto de Estructura de la Materia, CSIC, Madrid, where this study was carried out. S.F. and M.B. acknowledge also the hospitality of the same Institute. The authors thank to Ms. I. Puente Orench for performing the DSC measurements.


  1. 1.
    Tashiro K, Tadokoro H (1987) In: Encyclopedia of Polymer Science and Engineering, Supplement, John Wiley & Sons, New York, p187Google Scholar
  2. 2.
    Bruckner S, Meille V (1999) In: Karger-Kocsis J (ed) Polypropylene: an A–Z Reference, Kluwer Academic Publishers, DordrechtGoogle Scholar
  3. 3.
    Fujiwara Y, (1968) Kolloid Z Polymere 226:135CrossRefGoogle Scholar
  4. 4.
    Shi G, Chu F, Zhou G, Han Z (1989) Macromol Chem 190:907CrossRefGoogle Scholar
  5. 5.
    Varga J (1995) In: Karger-Kocsis J (ed) Polypropylene: structure, blends and composites, vol 1, chap 3, Chapman & Hall, London, pp 56–115Google Scholar
  6. 6.
    Karger-Kocsis J (1996) Polym Bull 36:119CrossRefGoogle Scholar
  7. 7.
    Karger-Kocsis J (1996) Polym Eng Sci 36:203CrossRefGoogle Scholar
  8. 8.
    Karger-Kocsis J, Varga J (1996) J Appl Polym Sci 62:291CrossRefGoogle Scholar
  9. 9.
    Fujiyama M (1995) Int Polym Process 10:172CrossRefGoogle Scholar
  10. 10.
    Tjong SC, Shen JS, Li RKY (1996) Polym Eng Sci 36:100CrossRefGoogle Scholar
  11. 11.
    Karger-Kocsis J, Shang PP (1998) J Thermal Anal 51:237CrossRefGoogle Scholar
  12. 12.
    Riekel C, Karger-Kocsis J (1995) Polymer 40:541CrossRefGoogle Scholar
  13. 13.
    Krumova M, Karger-Kocsis J, Balta Calleja FJ, Fakirov S (1999) J Mater Sci 34:2371CrossRefGoogle Scholar
  14. 14.
    Henning S, Michler GH, Ania F, Balta Calleja FJ (2005) Colloid Polym Sci 283(5):486CrossRefGoogle Scholar
  15. 15.
    Chen HB, Karger-Kocsis J, Wu JS, Varga J (2002) Polymer 43:6505CrossRefGoogle Scholar
  16. 16.
    Varga J, Breining A, Ehrenstein GW, Bodor G (1999) Int Polym. Process 14:358CrossRefGoogle Scholar
  17. 17.
    Varga J (2002) J. Macromol. Sci.-Phys. B41:1121CrossRefGoogle Scholar
  18. 18.
    Li JX, Cheng WL, Jia D (1999) Polymer 40:1219CrossRefGoogle Scholar
  19. 19.
    Peterlin A, Balta Calleja FJ (1969) J Appl Phys 40:4238CrossRefGoogle Scholar
  20. 20.
    Balta Calleja FJ, Peterlin A (1970) J Macromol Sci-Phys B4:519CrossRefGoogle Scholar
  21. 21.
    Sakaoku K, Peterlin A (1971) J Polym Sci A2(9):895Google Scholar
  22. 22.
    Peterlin A (1986) Colloid Polym Sci 285:382Google Scholar
  23. 23.
    Li JX, Cheung WL (1998) Polymer 39:6935CrossRefGoogle Scholar
  24. 24.
    Peterlin A (1971) J Mater Sci 6:490CrossRefGoogle Scholar
  25. 25.
    Balta Calleja FJ, Fakirov S (2000) Microhardness of Polymers, Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. 26.
    Balta Calleja FJ, Martinez-Salazar J, Asano T (1988) J Mater Sci Lett 7:165CrossRefGoogle Scholar
  27. 27.
    Chu F, Yamaoka T, Ide H, Kimura Y (1994) Polymer 35:3442CrossRefGoogle Scholar
  28. 28.
    Balta Calleja FJ, Santa Cruz C, Sawatari C, Asano T (1990) Macromolecules 23:5352CrossRefGoogle Scholar
  29. 29.
    Michler GH (1992) Kunststoff–Mikromechanik: Morphologie, Deformations- und Bruch-mechanismen”, Munchen, Carl HanserGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • M. Boyanova
    • 1
    • 2
  • F. J. Balta Calleja
    • 1
  • S. Fakirov
    • 1
    • 2
  1. 1.Instituto de Estructura de la Materia, CSICMadridSpain
  2. 2.Laboratory on PolymersUniversity of SofiaSofiaBulgaria

Personalised recommendations