# Statistical failure analysis of brittle coatings by spherical indentation: theory and experiment

- 194 Downloads
- 10 Citations

## Abstract

The mode of failure and failure probability of a brittle coating on a compliant substrate subjected to a static load through a spherical indenter is investigated experimentally and theoretically. We extend our recent study (2003, J Mat Sci 38:1589) of surface crack initiation in a monolithic solid to the layered system, and account for the multi axial stress state of the indentation in the failure probability analysis. Two modes of failure, a Hertzian cone crack initiating from the contacting surface and a half-penny-shaped crack initiating from the interface, are investigated and the probability of failure initiation for both surfaces are theoretically predicted and compared with experimental data.

The effect of interface debonding on failure phenomena is investigated. For a given load the failure probability for debonded specimens is significantly higher than that of well-bonded samples. For the debonded case the theoretical failure probability curve falls within the 90% confidence interval of the experimental data, while the experimental values for the completely bonded case show somewhat lower failure probabilities than that predicted. This may be attributed to the possible bridging effect by the adhesive on interfacial surface defects in the ceramic that is not accounted for in our model.

## Keywords

Stress Intensity Factor Crack Initiation Failure Probability Indentation Load Spherical Indenter## Notes

### Acknowledgments

This research was supported by the Ohio State University Interdisciplinary Biomaterials Seed Grants and by NIHDCR grant number R21 DE014719-02.

## Supplementary material

## References

- 1.Lawn BR, Deng Y, Miranda P, Pajares A, Chai H, Kim DK (2002) J Mater Res 17(12):3019CrossRefGoogle Scholar
- 2.Chai H, Lawn BR (1999) J Mater Res 14(9):3805Google Scholar
- 3.Miranda P, Pajares A, Guiberteau F, Cumbrera FL, Lawn BR (2001) Acta Mater 49(18):3719CrossRefGoogle Scholar
- 4.Tsai YL, Petsche PE, Anusavice KJ, Yang MC (1998) Int J Prosthodont 11(1):27Google Scholar
- 5.Wang R, Katsube N, Seghi RR, Rokhlin SI (2003) J Mater Sci 38:1589CrossRefGoogle Scholar
- 6.Frank FC, Lawn BR (1967) In: Proceedings of the Royal Society of London A299(1458) p 291Google Scholar
- 7.Mouginot R, Maugis D (1985) J Mater Sci 20:4354CrossRefGoogle Scholar
- 8.Wiederhorn SM (1974) et al ibid. 57:336Google Scholar
- 9.Wiederhorn SM, et al (1974) In: Bradt RC (ed) Fracture mechanics of ceramics, vol 2, Plenum, p 829Google Scholar
- 10.Shetty DK, Rosenfield AR, McGuire P, Bansal GK, Duckworth WH (1980) Ceram Bull 59(12):1193Google Scholar
- 11.Dodson M (1994) In: Weibull analysis. ASQ Quality Press, Milwaukee, Wisconsin. p 66Google Scholar
- 12.Johnson KL (1996) In: Contact mechanics. Cambridge University Press, Cambridge UKGoogle Scholar
- 13.Barovich D, Kingsley SC, Ku TC (1964) Int J Eng Sci 2:253CrossRefGoogle Scholar
- 14.Fisher-Cripps AC (1997) J Mater Sci 32:1277CrossRefGoogle Scholar
- 15.Weibull W (1939) In: A statistical theory of the strength of materials. Handlingar Nr 151. Ingeniors Vetenskaps Akademins, StockholmGoogle Scholar
- 16.Batdorf SB, Crose JG (1974) J Appl Mech 41:459CrossRefGoogle Scholar
- 17.Batdorf SB, Heinisch ML Jr (1978) J Am Ceram Soc 61(7–8):355CrossRefGoogle Scholar
- 18.Chao LY, Shetty DK (1991) J Am Ceram Soc 74(2):333CrossRefGoogle Scholar
- 19.Rosenstiel S, Gupta P, Van Der Sluys R, Zimmerman M (1993) Dent Mater 9:274CrossRefGoogle Scholar
- 20.Burke FJ, Fleming GJ, Nathanson D, Marquis PM (2002) J Adhes Dent Spring 4(1):7Google Scholar