Journal of Materials Science

, Volume 41, Issue 18, pp 5862–5869 | Cite as

Investigation of the microwave curing of the PR500 epoxy resin system

  • Mark Wallace
  • David Attwood
  • Richard J. DayEmail author
  • Frank Heatley


Microwave heating has been used to cure a resin system, PR500 (3M). The same resin has been cured using a conventional oven. The cured resins have been compared using a number of techniques including modulated differential scanning calorimetry (MDSC), dynamic thermal analysis, infrared spectroscopy (IR) and solid-state NMR spectroscopy. The reaction path appears to be slightly different depending upon the nature of the heating. The epoxy-amine reaction occurs to a greater extent than the epoxy-hydroxyl reaction in the microwave cured resin compared to the thermally cured resin. The dielectric properties for the thermally and microwave cured materials were measured for degrees of cure greater than 75% and over this range are similar for materials cured by the two techniques and thus not sensitive to this change. Broadening of the glass transition for microwave-cured epoxy resins was observed. Since the IR and solid-state NMR results show small differences as does the DMA behaviour of materials cured using the two routes the broadening is attributed to a difference in network structure.


Microwave curing Epoxy resin Reaction path Infrared spectroscopy Solid-state NMR Differential scanning calorimetry Dynamic mechanical analysis 


  1. 1.
    Nightingale C, Day RJ (2002) Composites A 33:1021CrossRefGoogle Scholar
  2. 2.
    Zainol I, Day RJ, Heatley F (2003) J Appl Polym Sci 90(10):2764CrossRefGoogle Scholar
  3. 3.
    Johnson MS, Rudd CD, Hill DJ (1998) Composites Part A 29(1–2):71–86CrossRefGoogle Scholar
  4. 4.
    Rahmat AR (2001) Ph.D. thesis, UMISTGoogle Scholar
  5. 5.
    Boey F, Gosling I, Lye SW (1992) J Mater Process Technol 29(1–3):311CrossRefGoogle Scholar
  6. 6.
    Boey F, Yap BH (2001) Polym. Test. 20:837CrossRefGoogle Scholar
  7. 7.
    Wei J, Hawley M, DeMeuse MT (1995) Polym Eng Sci 35(5):461CrossRefGoogle Scholar
  8. 8.
    E Marand, Baker KR, Graybeal JD (1992) Macromolecules 25:2243CrossRefGoogle Scholar
  9. 9.
    Mijovic J, Wijaya J (1990) Macromolecules 23:3671CrossRefGoogle Scholar
  10. 10.
    Nesbitt A, Navabpour P, Degamber B, Nightingale C, Mann T, Fernando G, Day RJ (2004) Meas Sci Technol 15:2313CrossRefGoogle Scholar
  11. 11.
    Navabpour P, Nesbitt A, Degamber B, Fernando G, Mann T, Day RJ (2006) J Appl Polym Sci 99(6): 3658CrossRefGoogle Scholar
  12. 12.
    Mijovic J, Fishbain A, Wijaya J (1992) Macromolecules 25:986CrossRefGoogle Scholar
  13. 13.
    Wei JH, Hawley MC, Delong JD (1993) Polym Eng Sci 33(17):1132CrossRefGoogle Scholar
  14. 14.
    Day RJ, Yau SHC, Hewson KD (1998) Plast Rubber Compos Process Appl 27:213Google Scholar
  15. 15.
    Yarlagadda KDVP, Hsu S-H (2004) J Mater Process Technol 1532:155Google Scholar
  16. 16.
    Portelli GB, Schultz WJ, Jordan RC, Hackett SC (1988) Int. SAMPE Tech. Conf. 20 (Mater.-Processes: Intercept. Point) pp 20–33Google Scholar
  17. 17.
    Pogany G (1970) Polymer 11:66CrossRefGoogle Scholar
  18. 18.
    Brydson JA (1995) Plastics materials, 6th edn. ButterworthsGoogle Scholar
  19. 19.
    Delmotte M, Jullien H, Ollivon M (1991) Eur Polym J 4/5:371CrossRefGoogle Scholar
  20. 20.
    Jow J, Hawley MC, Finzel M, Kern T (1988) Polym Eng Sci 28:1450CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Mark Wallace
    • 1
  • David Attwood
    • 1
  • Richard J. Day
    • 2
    Email author
  • Frank Heatley
    • 3
  1. 1.Sowerby Research CentreBritish Aerospace Operations Ltd., FiltonBristolUK
  2. 2.School of MaterialsUniversity of ManchesterManchesterUK
  3. 3.Department of ChemistryUniversity of ManchesterManchesterUK

Personalised recommendations