Journal of Materials Science

, Volume 41, Issue 19, pp 6228–6236 | Cite as

Thermal expansion behaviour of ultra-high modulus carbon fibre reinforced magnesium composite during thermal cycling

  • M. Russell-StevensEmail author
  • R. I. Todd
  • M. Papakyriacou


The thermally induced strain response of unidirectional P100S/AZ91D carbon fibre-reinforced magnesium composite was studied over five cycles in the ±100 °C temperature range. A temperature-dependent one-dimensional model was employed to predict the anticipated response to the cycling thermal environment. Strain hysteresis was observed during cycling and attributed to matrix yielding. First cycle residual plastic strains were modelled with reasonable agreement. Experimental results deviated from predictions during subsequent cycles with continued thermal ratcheting shifting the hysteresis loops to higher strains with increasing cycles. This was thought to be associated with interfacial debonding and frictional sliding at fibre/matrix interfaces. The effect of thermal treatment on composite expansion behaviour was investigated and the results discussed in terms of minimising thermally induced deformations during anticipated service conditions. Treatments were found to affect the first cycle behaviour, reducing in particular residual plastic strain generation. Matrix yield strength was exceeded over the thermal cycle due to a lack of sufficient hardening, and since interfacial conditions were unaltered, interfacial sliding and thermal ratcheting could not be eliminated. The potential for improvement of C/Mg composite thermal strain response was explored in the light of the current findings.


Thermal Cycle Thermal Strain Discontinuous Precipitate Fibre Matrix Interface Thermal Expansion Behaviour 



The authors wish to thank P. Allen, Hexcel Composites, Duxford, England for kindly allowing the use of the Linseis cryogenic dilatometer and J. Reiter (LKR) for the fabrication of C/Mg specimens. Thanks are also due to P. Schulz (LKR) for his valuable discussions.


  1. 1.
    Maclean BJ, Misra MS (1982) In: Proc Symp Mechanical Behaviour of Metal Matrix Composites. AIME, Dallas, TX, pp 195–212Google Scholar
  2. 2.
    Wolff EG, Kendall EG, Riley WC (1980) In: Proc 3rd Int Conf Comp Mater Paris 26–29 August. Pergamon Press, pp 1140–1152Google Scholar
  3. 3.
    Badini C, Ferraris M, Marchetti F (1994) Mater Lett 21(1):55CrossRefGoogle Scholar
  4. 4.
    Wolff EG, Min BK, Kural MH (1985) J Mater Sci 20(4):1141CrossRefGoogle Scholar
  5. 5.
    Kural MH, Min BK (1984) J Comp Mater 18(6):519CrossRefGoogle Scholar
  6. 6.
    Min BK, Crossman FW (1981) In: Hahn TA (ed) Proc 8th Int Thermal Expansion Symp. National Bureau of Standards, Gaithersburg, Maryland; Plenum, New York, pp 175–188, June 1981Google Scholar
  7. 7.
    Kiehn J, Bohm E, Kainer KU (1997) In: Proc 1st Int Conf Ceramic and Metal Matrix Composites, vol 127. pp 861–867Google Scholar
  8. 8.
    Zhang HY, Anderson PM, Daehn GS (1994) Metall Trans A 25(2):415CrossRefGoogle Scholar
  9. 9.
    Armstrong JH, Rawal SP, Misra MS (1990) Mater Sci Eng A 126:119CrossRefGoogle Scholar
  10. 10.
    Tsai S-D, Mahulikap D, Marcus HL, Noyan IC, Cohen JB (1981) Mater Sci Eng 47:145CrossRefGoogle Scholar
  11. 11.
    Tompkins SS (1989) In: Johnson WS (ed) Metal matrix composites: testing, analysis, and failure modes – ASTM STP 1032. ASTM, Philadelphia, pp 54–67Google Scholar
  12. 12.
    Tompkins SS, Sharpe GR (1986) In: Proc 18th Int SAMPE Technical Conf. SAMPE, pp 623–637Google Scholar
  13. 13.
    Mitra S, Dutta I, Hansen RC (1991) J Mater Sci 26(22):6223CrossRefGoogle Scholar
  14. 14.
    Diwanji AP, Hall IW (1992) J Mater Sci 27(8):2093CrossRefGoogle Scholar
  15. 15.
    Caceres CH, Davidson CJ, Griffiths JR, Newton CL (2002) Mater Sci Eng A 325(1–2):344CrossRefGoogle Scholar
  16. 16.
    Clarke JB (1968) Acta Metall Mater 16:141CrossRefGoogle Scholar
  17. 17.
    Celotto S (2000) Acta Mater 48(8):1775CrossRefGoogle Scholar
  18. 18.
    Madgwick A, Mori T, Withers PJ, Wakashima K (2001) Mech Mater 33:493CrossRefGoogle Scholar
  19. 19.
    Dutta I (2000) Acta Mater 48(5):1055CrossRefGoogle Scholar
  20. 20.
    Russell-Stevens M, Todd RI, Papakyriacou M (2005) Mater Sci Eng A 397(1–2):249CrossRefGoogle Scholar
  21. 21.
    Vedula M, Pangborn RN, Queeney RA (1988) Composites 19(2):133CrossRefGoogle Scholar
  22. 22.
    Feldhoff A, Pippel E, Woltersdorf J (1997) J Microsc 185:122CrossRefGoogle Scholar
  23. 23.
    Capel H, Harris SJ, Schulz P, Kaufmann H (2000) Mater Sci Technol 16(7–8):765CrossRefGoogle Scholar
  24. 24.
    Wenwen D, Yangshan S, Xuegang M, Feng X, Min Z, Dengyun W (2003) Mater Sci Eng A356:1CrossRefGoogle Scholar
  25. 25.
    Beffort O, Hausmann C (2000) Magnesium alloys and their applications. Wiley-VCH, Munich, Germany, pp 215Google Scholar
  26. 26.
    Hassan SF, Gupta M (2003) Mater Sci Technol 19(2):253CrossRefGoogle Scholar
  27. 27.
    Hassan SF, Gupta M (2002) J Mater Sci 37(12):2467CrossRefGoogle Scholar
  28. 28.
    Polmear IJ (1981) Light alloys—metallurgy of the light alloys. Edward Arnold, LondonGoogle Scholar
  29. 29.
    Chin ESC, Nunes J (1987) J Met 39(10):A32Google Scholar
  30. 30.
    Hall IW (1987) Metallography 20(2):237CrossRefGoogle Scholar
  31. 31.
    Lin MH, Buchgraber W, Korb G, Kao PW (2002) Scr Mater 46:169CrossRefGoogle Scholar
  32. 32.
    Hassan SF, Ho KF, Gupta M (2004) Mater Lett 58(16):2143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • M. Russell-Stevens
    • 1
    Email author
  • R. I. Todd
    • 1
  • M. Papakyriacou
    • 2
  1. 1.Department of MaterialsUniversity of OxfordOxfordEngland
  2. 2.ARC Leichtmetall-Kompetenzzentrum Ranshofen GmbH, AMAG-FVA-GebäudeRanshofenAustria

Personalised recommendations