Advertisement

Journal of Materials Science

, Volume 41, Issue 18, pp 6056–6061 | Cite as

Effects of Pb2+ doping on La4Ti9O24 ceramics

  • Yuan-Wen Liu
  • Pang Lin
  • Ming-Wen Chu
Article
  • 103 Downloads

Abstract

The kinetic structural evolution of the Pb2+-doped La4Ti9O24 ceramics was investigated. Using electron diffraction and Rietveld analysis of the X-ray powder diffraction patterns, we show that the increase in Pb2+ doping results in the structural transition from La4Ti9O24 to a La2/3TiO3-type phase (Ibmm, No. 74). Further kinetic studies of Pb2+ diffusion into La4Ti9O24 ceramics suggest that the La4Ti9O24–La2/3TiO3 phase transition requires an activation energy of 607 ± 60 kJ/mol.

Keywords

Perovskite Microwave Dielectric Property Orthorhombic Space Group Ceramic Bulk Good Microwave Dielectric Property 

Notes

Acknowledgement

The authors gratefully acknowledge Dr. H.Y. Lee of National Synchrotron Radiation Research Center (Taiwan) for collecting data of X-ray diffraction.

References

  1. 1.
    MacChesney JB, Sauer HA (1962) J Am Ceram Soc 45:416CrossRefGoogle Scholar
  2. 2.
    Škapin S, Kolar D, Suvorov D (2000) J Eur Ceram Soc 20:1179CrossRefGoogle Scholar
  3. 3.
    Morris RE, Owen JJ, Cheetham AK (1995) J Phys Chem Solids 56:1297CrossRefGoogle Scholar
  4. 4.
    Takahashi J, Kageyama K, Kodaira K (1993) Jpn J Appl Phys 32:4327CrossRefGoogle Scholar
  5. 5.
    Crandles DA, Timusk T, Garrett JD, Greedan JE (1994) Phys Rev B 49:16207CrossRefGoogle Scholar
  6. 6.
    Park JK, Choi CH, Park HD, Choi SY (2001) J Mater Res 16:2568CrossRefGoogle Scholar
  7. 7.
    MacEachern MJ, Dabkowska H, Garrett JD, Amow G, Gong W, Liu G, Greedan JE (1994) Chem Mater 6:2092CrossRefGoogle Scholar
  8. 8.
    Yoshioka H, Kikkawa S (1998) J Mater Chem 8:1821CrossRefGoogle Scholar
  9. 9.
    Jung WH (1999) J Mater Sci Lett 18:1181CrossRefGoogle Scholar
  10. 10.
    Jung WH, Wakai H, Nakatsugawa H, Iguchi E (2000) J Appl Phys 85:2560CrossRefGoogle Scholar
  11. 11.
    Yoshioka H (2002) J Am Ceram Soc 85:1339CrossRefGoogle Scholar
  12. 12.
    Ruiz AI, López ML, Pico C, Veiga ML (2002) J Solid State Chem 163:472CrossRefGoogle Scholar
  13. 13.
    Yoshioka H (1994) Jpn J Appl Phys 33:L945CrossRefGoogle Scholar
  14. 14.
    Kim IS, Jung WH, Inaguma Y, Nakamura T, Itoh M (1995) Mat Res Bull 30:307CrossRefGoogle Scholar
  15. 15.
    Suvorov D, Valant M, Škapin S, Kolar D (1998) J Mater Sci 33:85CrossRefGoogle Scholar
  16. 16.
    Salak AN, Seabre MP, Ferreira VM (2003) J Eur Ceram Soc 23:2409CrossRefGoogle Scholar
  17. 17.
    Liu YW, Lin P (2005) Mater Chem Phys 92:98CrossRefGoogle Scholar
  18. 18.
    Liu YW, Lin P (2006) Mater Chem Phys (in press)Google Scholar
  19. 19.
    Abe M, Uchino K (1974) Mat Res Bull 9:147CrossRefGoogle Scholar
  20. 20.
    Yokoyama M, Ota T, Yamai I, Takahashi J (1989) J Crystal Growth 96:490CrossRefGoogle Scholar
  21. 21.
    Zheng W, Pang W (1997) Mater Lett 33:231CrossRefGoogle Scholar
  22. 22.
    Ruiz AI, López ML, Veiga ML, Pico C (1999) J Solid State Chem 148:329CrossRefGoogle Scholar
  23. 23.
    Sasaki H, Matsuo Y (1965) J Am Ceram Soc 48:434CrossRefGoogle Scholar
  24. 24.
    Sasaki H, Matsuo Y (1972) Ceram Bull 51:164Google Scholar
  25. 25.
    Tien TY, Hummel FA (1967) Trans Brit Ceram Soc 66:233Google Scholar
  26. 26.
    Yoshioka H (1994) J Mater Res 9:2133CrossRefGoogle Scholar
  27. 27.
    Škapin S, Kolar D, Suvorov D (1993) J Am Ceram Soc 76:2359CrossRefGoogle Scholar
  28. 28.
    Hanžel D, Hanžel D, Meisel W, Kraševec V (1994) Hyperfine Interaction 92:1019CrossRefGoogle Scholar
  29. 29.
    Lee HJ, Park HM, Cho YK (2003) J Am Ceram Soc 86:1395CrossRefGoogle Scholar
  30. 30.
    Henning D (1971) Mat Res Bull 6:329CrossRefGoogle Scholar
  31. 31.
    Prisedsky VV, Golubitsky VM (1992) Ferroelectrics 131:283CrossRefGoogle Scholar
  32. 32.
    Goodenough JB, Longo JM (1978) In: Magnetic and other properties of oxides and related compounds. Landolt-Börnstein, New Series, Springer-Verlag, Berlin, 126 pGoogle Scholar
  33. 33.
    Mitchell RH (2002) In: Perovskites: modern and ancient. Almaz Press, Thunder Bay, Ontario, CanadaGoogle Scholar
  34. 34.
    Hunter B (2000) LHPM-Rietica Rietveld. ANSTO, AustraliaGoogle Scholar
  35. 35.
    Noheda B, Cox DE, Shirane G, Gonzalo JA, Cross LE, Park S-E (1999) Appl Phys Lett 74:2059CrossRefGoogle Scholar
  36. 36.
    Philibert J (1989) Defect Diffus Forum 66–69:995Google Scholar
  37. 37.
    Dybkov VI (1986) J Mater Sci 21:3078CrossRefGoogle Scholar
  38. 38.
    Cherniak DJ, Watson EB, Grove M, Harrison TM (2004) Geochim Cosmochim Acta 68:829CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Nanomaterials LaboratoriesNational Institute for Materials ScienceTsukuba, IbarakiJapan

Personalised recommendations