Journal of Materials Science

, Volume 41, Issue 17, pp 5639–5645 | Cite as

Substrate temperature and water vapour effects on structural and mechanical properties of TiOxNy coatings

  • J. M. Chappé
  • J. Gavoille
  • N. MartinEmail author
  • J. Lintymer
  • J. Takadoum


Dc reactive sputtering was successfully implemented to deposit titanium oxynitride thin films using a titanium metallic target, argon, nitrogen and water vapour as reactive gases. The nitrogen partial pressure was kept constant during every deposition whereas that of the water vapour was systematically changed from 0 to 0.1 Pa. The study aims at comparing the structural and mechanical properties of the coatings deposited at room temperature (293 K) and at 673 K. Surface morphology of the film was examined by atomic force microscopy and showed different aspects according to the growth temperature. Topography mainly depends on the amount of water vapour introduced during the deposition process. Some significant changes of the crystallographic structure, due to the high substrate temperature were correlated with the evolution of the surface aspect and roughness parameters. Determination of the phase occurrence by X-ray diffraction was also carried out and appeared to be a significant parameter in understanding the evolution of mechanical properties like nanohardness (Hn) and Young’s modulus (E). Hn and E values obtained by nanoindentation ranged from 16.5 to 7 GPa and from 240 to 100 GPa, respectively. For both temperatures, mechanical properties of titanium oxynitride thin films were notably reduced as a function of the water vapour supply, especially for partial pressures higher than 4 × 10−2 Pa. These mechanical behaviours were correlated and discussed with the phase occurrence and the amorphous structure of titanium oxynitride thin films.


Water Vapour Substrate Temperature Water Vapour Pressure Nitrogen Partial Pressure Nuclear Reaction Analysis 



The authors gratefully acknowledge the financial support of the European Union through the NMP3-CT-2003-505948 project “HARDECOAT”. They also thank the Region of Franche-Comté, France.


  1. 1.
    Scopel WL, Fantini MCA, Alayo MI, Pereyra I (2002) Thin Sol Films 413:59CrossRefGoogle Scholar
  2. 2.
    Richthofen AV, Domnick R, Cremer R, Neuschütz D (1998) Thin Sol Films 317:282CrossRefGoogle Scholar
  3. 3.
    Futsuhara M, Yoshioka K, Takai O (1998) Thin Sol Films 317:322CrossRefGoogle Scholar
  4. 4.
    Martin N, Banakh O, Santo AME, Springer S, Sanjinès R, Takadoum J, Lévy F (2001) Appl Surf Sci 185:123CrossRefGoogle Scholar
  5. 5.
    Suzuki M, Saito Y (2001) Appl Surf Sci 173:171CrossRefGoogle Scholar
  6. 6.
    Jung MJ, Nam KH, Chung YM, Boo JH, Han JG (2003) Surf Coat Technol 171:71CrossRefGoogle Scholar
  7. 7.
    Fabreguette F, Imhoff L, Maglione M, Domenichini B, Lucas MCMD, Sibillot P, Bourgeois S, Sacilotti M (2000) Chem Vap Deposition 6:1CrossRefGoogle Scholar
  8. 8.
    Vaz F, Cerqueira P, Rebouta L, Nascimento SMC, Alves E, Goudeau P, Rivière JP, Pischow K, Rijk LD (2004) Thin Sol Films 447–448:449CrossRefGoogle Scholar
  9. 9.
    Kazemeini MH, Berezin AA, Fukuhara N (2000) Thin Sol Films 372:70CrossRefGoogle Scholar
  10. 10.
    Chappé JM, Martin N, Terwagne G, Lintymer J, Gavoille J, Takadoum J (2003) Thin Sol Films 440:66CrossRefGoogle Scholar
  11. 11.
    Vaz F, Cerqueira P, Rebouta L, Nascimento SMC, Alves E, Goudeau P, Rivière JP (2003) Surf Coat Technol 174–175:197CrossRefGoogle Scholar
  12. 12.
    Martin N, Sanjinès R, Takadoum J, Lévy F (2001) Surf Coat Technol 142–144:615CrossRefGoogle Scholar
  13. 13.
    Nishimura E, Ando M, Onisawa KI, Takabatake M, Minemura T (1996) Jpn J Appl Phys 35:2788CrossRefGoogle Scholar
  14. 14.
    Bally AR, Hones P, Sanjinès R, Schmid PE, Lévy F (2002) Surf Coat Technol 108–109:272Google Scholar
  15. 15.
    Banakh O, Schmid PE, Sanjinès R, Lévy F (2002) Surf Coat Technol 151–152:272CrossRefGoogle Scholar
  16. 16.
    Chappé JM, Martin N, Pierson JF, Terwagne G, Lintymer J, Gavoille J, Takadoum J (2004) Appl Surf Sci 225:29CrossRefGoogle Scholar
  17. 17.
    Shigesato Y, Hayashi Y, Masui A, Haranou T (1991) Jpn J Appl Phys 30:814CrossRefGoogle Scholar
  18. 18.
    Nakada T, Ohkubo Y, Kuniok A (1996) Jpn J Appl Phys 30:3344CrossRefGoogle Scholar
  19. 19.
    Onisawa KI, Nishimura E, Ando M, Satou T, Takabatake M, Minemura T (1997) MRS 1996 Spring Meeting, MRS Symposium Proceeding 424:341Google Scholar
  20. 20.
    Lobl P, Huppertz M, Mergel D (1994) Thin Sol Films 251:72CrossRefGoogle Scholar
  21. 21.
    Hones P, Diserens M, Lévy F (1999) Surf Coat Technol 120–121:277CrossRefGoogle Scholar
  22. 22.
    Oliver WC, Pharr GM (1992) J Mater Res 7:1564CrossRefGoogle Scholar
  23. 23.
    Jönsson B, Hogmark S (1984) Thin Sol Films 377–378:257CrossRefGoogle Scholar
  24. 24.
    Makino Y, Nose M, Tanaka T, Misawa M, Tanimoto A, Nakai T, Kato K, Nogi K (1998) Surf Coat Technol 98:934CrossRefGoogle Scholar
  25. 25.
    Veprek S, Reiprich S, Shizhi L (1995) Appl Phys Lett 66:2640CrossRefGoogle Scholar
  26. 26.
    Diserens M, Patscheider J, Lévy F (1999) Surf Coat Technol 120–121:158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • J. M. Chappé
    • 1
  • J. Gavoille
    • 1
  • N. Martin
    • 1
    Email author
  • J. Lintymer
    • 1
  • J. Takadoum
    • 1
  1. 1.Laboratoire de Microanalyse des Surfaces (LMS)Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)Besançon CedexFrance

Personalised recommendations