Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 4944–4947 | Cite as

A novel hydrothermal route to the synthesis of xonotlite nanofibers and investigation on their bioactivity

  • Xiaoke Li
  • Jiang Chang
Article

Abstract

Xonotlite nanofibers were synthesized under hydrothermal condition by controlling reaction time and the temperature combined with cationic surfactant as templates. The result showed that long reaction time and low reaction temperature favored the formation of xonotlite nanofibers. The nanofibers obtained at 180 °C for 30 h in the presence of cationic surfactant have high aspect ratios more than 100 with diameters of 50–200 nm. The formation mechanism of xonotlite nanofibers was assumed to be a template-based synthesis and cationic surfactants could be used as templates. The evaluation of bioactivity revealed that bonelike apatite could be formed on the surface of xonotlite nanofibers after soaking in simulated body fluid (SBF) for 7 days and xonotlite nanofibers could be potential candidate as reinforcement reagents for preparation of bioactive composites.

Keywords

Apatite CTAB Critical Micelle Concentration Simulated Body Fluid Cationic Surfactant 

Notes

Acknowledgement

This work was supported by grants from Science and Technology Commission of Shanghai Municipality (Grant No.:0352nm119).

References

  1. 1.
    Mitsuda T (1990) Gypsum Lime 229:464Google Scholar
  2. 2.
    Mitsuda T (1988) Gypsum Lime 214:129Google Scholar
  3. 3.
    Ohtsuki C, Kokubo T, Yamamuro T (1992) J Non-Cryst Solids 143:84CrossRefGoogle Scholar
  4. 4.
    Salinas AJ, Vallet-regi M, Izquierdo-barba I (2001) J Sol-Gel Sci Technol 21:13CrossRefGoogle Scholar
  5. 5.
    Siriphannon P, Hayashi S, Yasumori A, Okada K (1999) J Mater Res 82:529CrossRefGoogle Scholar
  6. 6.
    Gou ZR, Chang J (2004) J Eur Ceram Soc 24:93CrossRefGoogle Scholar
  7. 7.
    Gou ZR, Chang J, Gao JH, Wang Z (2004) J Eur Ceram Soc 24:3491CrossRefGoogle Scholar
  8. 8.
    Kunugida K, Tsukiyama K, Teramura S, Yuda S, Isu N, Shoji T, Takahashi H (1988) Gypsum Lime 216:288Google Scholar
  9. 9.
    Yanagisawa K, Feng Q, Yamasaki N (1997) J Mater Sci Lett 16:889CrossRefGoogle Scholar
  10. 10.
    Huang X, Jiang DL, Tan SH, Jiang DL (2002) Mater Res Bull 37:1885CrossRefGoogle Scholar
  11. 11.
    Cho SB, Nakanishi K, Kokubo T, Soga N (1995) J Am Ceram Soc 78:1769CrossRefGoogle Scholar
  12. 12.
    Meldrum FC, Kotov NA, Fendler JH (1994) J Phys Chem 98:4506CrossRefGoogle Scholar
  13. 13.
    Delsannti M, Moussaid A, Munch JP (1993) J Colloid Interf Sci 157:285CrossRefGoogle Scholar
  14. 14.
    Han SH, Hou WG, Dang WX, Xu J, Hu JF, Li DQ (2003) Mater Lett 57:4520CrossRefGoogle Scholar
  15. 15.
    Yao J, Tjandra W, Chen YZ, Tam KC, Ma J, Soh V (2003) J Mater Chem 13:3053CrossRefGoogle Scholar
  16. 16.
    Xiong YJ, Xie Y, Yang J, Zhong R, Wu CZ, Du GA (2002) J Mater Chem 12:3712CrossRefGoogle Scholar
  17. 17.
    Li XK, Chang J (2005) J Mater Sci Mater M 16:361CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Biomaterials and Tissue Engineering Research Center, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations