Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5613–5618 | Cite as

Colloidal dispersion and rheology study of nanoparticles

  • Kathy Lu
  • Chris Kessler
Article

Abstract

The effects of dispersant ammonium poly(methacrylic acid) (PMAA-NH4) and poly(acrylic acid) (PAA) on nano-Al2O3 particle dispersion have been investigated. Under the same dispersion viscosity, Al2O3 of 38 nm size requires 20 times more PAA dispersant than Al2O3 of 0.2 μm size but with only 9 times specific surface area increase. For the same carboxylic acid group to Al2O3 mole ratio, the PAA dispersant adsorbs more readily onto nano-Al2O3 particles than the PMAA-NH4 dispersant and has better dispersion efficiency. Rheology measurements confirm the better dispersion and higher dispersion efficiency when PAA is used. Maximum solids loading has been predicted for each suspension based on the rheological data; this predication capability can serve as the important guidance for future dispersion designs.

Keywords

Al2O3 Shear Rate Zeta Potential Carboxylic Acid Group Polymer Dispersant 

Notes

Acknowledgments

The authors are grateful for the support of Dr. Marc Edwards from Civil and Environmental Engineering Department of Virginia Tech in carrying out the experiments.

References

  1. 1.
    Zych L, Haberko K (2004) Key Eng Mater 264–268:2323CrossRefGoogle Scholar
  2. 2.
    Lance D, Valdivieso F, Goeuriot P (2004) Ibid 264–268:205Google Scholar
  3. 3.
    Chang S, Doremus RH, Schadler LS, Siegel RW (2004) Int J Appl Ceram Tech 1:172CrossRefGoogle Scholar
  4. 4.
    Wagner NJ, Bender JW (2004) MRS Bull 29:100CrossRefGoogle Scholar
  5. 5.
    Tohver V, Chan A, Sakurada O, Lewis JA (2001) Langmuir 17:8414CrossRefGoogle Scholar
  6. 6.
    Cesarano J III, Aksay IA (1988) J Am Ceram Soc 71:1062CrossRefGoogle Scholar
  7. 7.
    Lewis JA (2000) ibid 83:2341Google Scholar
  8. 8.
    Cesarano J III, Aksay IA, Bleier A (1988) Ibid 71:250Google Scholar
  9. 9.
    Napper D (1983) Polymeric stabilization of colloidal dispersions Academic Press, London, p 8Google Scholar
  10. 10.
    Sigmund W, Bell N, Bergstrom L (2000) J Am Ceram Soc 83:1557CrossRefGoogle Scholar
  11. 11.
    Cho J, Dogan F (2001) J Mat Sci 36:2397CrossRefGoogle Scholar
  12. 12.
    Singh B, Bhattacharjee S, Besra L, Sengupta DK (2004) Ceram Int 30:939CrossRefGoogle Scholar
  13. 13.
    Ogawa A, Yamada H, Matsuda S, Okajima K (1997) J Rheol 41:769CrossRefGoogle Scholar
  14. 14.
    Hoffman RL (1974) J Colloid Interface Sci 46:491CrossRefGoogle Scholar
  15. 15.
    Kirby GH, Harris DJ, Li Q, Lewis JA (2004) J Am Ceram Soc 87:181CrossRefGoogle Scholar
  16. 16.
    Krieger IM, Dougherty M (1959) Trans Soc Rheol 3:137–152CrossRefGoogle Scholar
  17. 17.
    Liu D-M (2000) J Mater Sci 35:5503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations