Journal of Materials Science

, Volume 41, Issue 17, pp 5538–5547 | Cite as

Dielectric characteristics of sisal–oil palm hybrid biofibre reinforced natural rubber biocomposites

  • Maya Jacob
  • K. T. Varughese
  • Sabu ThomasEmail author


Natural rubber was reinforced with sisal and oil palm fibers. Biocomposites were prepared by varying the weight fraction of the fibers. The dielectric properties such as dielectric constant, volume resisitivity and dielectric loss factor of the biocomposites were evaluated as a function of fiber loading, frequency and chemical modification of fibers. The dielectric constant values were found to be higher for fiber reinforced system than the gum due to polarization exerted by the incorporation of lignocellulosic fibers. Chemical modification of fibers resulted in decrease of dielectric constant values and volume resisitivity values. The volume resisitivity of the composites was found to decrease with fiber loading due to increase of hydrophilicity imparted by the lignocellulosic fibers. The dissipation factor was found to increase with fiber content.


Dielectric Constant Natural Rubber Silane Coupling Agent Dissipation Factor Orientation Polarization 


  1. 1.
    Jacob M, Joseph S, Pothen LA, Thomas S (2005) Compos Interfaces 12(1):95CrossRefGoogle Scholar
  2. 2.
    Hong CK, Wool RP (2004) J Nat Fibres 1(2):83CrossRefGoogle Scholar
  3. 3.
    Hong CK, Wool RP (2005) J Appl Polym Sci 95(6):1524CrossRefGoogle Scholar
  4. 4.
    Xua J, Donohoeb JP, Pittman CU Jr. (2004) Compos Part A 35:693CrossRefGoogle Scholar
  5. 5.
    Cabral H, Cisneros M, Kenny JM, Vazquez A, Bernal CR (2005) J Compos Mater 39(1):51CrossRefGoogle Scholar
  6. 6.
    Paul A, Thomas S (1997) J Appl Polym Sci 63:247CrossRefGoogle Scholar
  7. 7.
    Paul A, Joseph K, Thomas S (1997) Compos Sci Technol 51:67CrossRefGoogle Scholar
  8. 8.
    Chand N, Jain D (2005) Compos Part A 36:594–602CrossRefGoogle Scholar
  9. 9.
    Pramanik PK, Khastgir D, Saha TN (1991) Plast Rubber Compos Process Appl 15:3Google Scholar
  10. 10.
    Choi MH, Jeon BH, Chung IJ (2000) Polymer 41:3243CrossRefGoogle Scholar
  11. 11.
    Dutta AK, Samantary BK, Bhattachatterjee SF (1984) J Mater Sci Lett 3:667CrossRefGoogle Scholar
  12. 12.
    Mohammed EM, Malini KA, Kurian P, Anantharaman MR (2002) Mater Res Bull 37(4):753CrossRefGoogle Scholar
  13. 13.
    Tchmutina I, Ryvkinaa N, Saha N, Saha P (2004) Polym Degrad Stab 86:411CrossRefGoogle Scholar
  14. 14.
    Lin Y-S, Chiu S-S (2004) J Appl Polym Sci 93(5):2045CrossRefGoogle Scholar
  15. 15.
    Agrawal S, Mandot S, Bandyopadhyay S, Mukhopadhyay R, Dasgupta M De PP, Deuri AS (2004) Prog Rubber Plastics Recycl Technol 20(4):267CrossRefGoogle Scholar
  16. 16.
    Nashar DEE, Abd-El-Messieh SL, Basta AH (2004) J Appl Polym Sci 91:3410CrossRefGoogle Scholar
  17. 17.
    Joseph S, Jacob M, Thomas S (2005) Biopolym Biocomp 435–472Google Scholar
  18. 18.
    Jacob M, Varughese KT, Thomas S (2004) J Appl Polym Sci 93(5):2305CrossRefGoogle Scholar
  19. 19.
    Balta Calleja FJ, Ezquetva TA, Rueda DR (1984) J Mat Res 3:165Google Scholar
  20. 20.
    Pooley MH, Boonstra BBT (1957) Rubber Chem Technol 30:170CrossRefGoogle Scholar
  21. 21.
    Van Beek LKH (1962) J Appl Polym Sci 6(24):651CrossRefGoogle Scholar
  22. 22.
    Jacob M, Thomas S, Varughese KT (2004) Compos Sci Tech 64:955CrossRefGoogle Scholar
  23. 23.
    Li Y, Mai Y-W, Ye L (2005) Compos Interfaces 12(1–2):141CrossRefGoogle Scholar
  24. 24.
    Folkes MJ, Hardwick ST (1990) J Mater Sci 52:2598CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.School of Chemical SciencesMahatma Gandhi UniversityPriyadarshini Hills P.O., KottayamIndia
  2. 2.Central Power Research InstitutePolymer LaboratoryBangaloreIndia

Personalised recommendations