Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5646–5656 | Cite as

Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites

  • Hideaki Maeda
  • Megumi Nakajima
  • Toshiki Hagiwara
  • Takashi Sawaguchi
  • Shoichiro Yano
Article

Abstract

In plants such as grasses, rice, and sugar cane, biomineralizatin occurs such that amorphous silica is drawn from soil, transferred and deposited on polysaccharide matrix. In this study, by mimicking natural biomineralization in plants, a cellulose/silica hybrid was produced using bacterial cellulose (BC). BC hydro-gel was immersed in an aqueous solution of silanol derived from tetraethoxysilane (TEOS), and silanol was then converted into silica in the BC hydro-gel matrix. By pressing the BC hydro-gels and hybrids at 120 °C and 1–2 MPa, water-free translucent sheets were obtained. In the leaves of rice plants, large silica bodies (μm order) were embedded in the polysaccharide matrix, whereas in the BC/silica hybrids, nano scale silica was embedded between the micro fibrils of the BC matrix. Reflecting this structure, the modulus of elasticity and tensile strength of dry BC/silica hybrid improved to 17 GPa at 25 °C and 185 MPa, respectively. In the case of rice plants, the modulus was 3.5 GPa at 25 °C and the tensile strength was 25–88 MPa, suggesting a weaker structure than in BC hybrid.

Keywords

Rice Plant Bacterial Cellulose Silanol Retardation Time Silica Content 

Notes

Acknowledgement

The authors wish to acknowledge a Research Project Grant-in-Aid for Scientific Research (1999–2000).

References

  1. 1.
    Calvert P, Mann S (1988) J Mater Sci 23:3801CrossRefGoogle Scholar
  2. 2.
    Mann S, Heywood BR, Rajam S, Birchall JD (1988) Nature 334(25):692CrossRefGoogle Scholar
  3. 3.
    Sobon CA, Bowen HK, Broad A, Calvert PD (1987) J Mater Sci Lett 6:901CrossRefGoogle Scholar
  4. 4.
    Bianconi PA, Lin J, Strzelecki AR (1991) Nature 349(24):315CrossRefGoogle Scholar
  5. 5.
    Moyle BD, Ellul RE, Calvert PD (1987) J Mater Sci Lett 6:167CrossRefGoogle Scholar
  6. 6.
    Calvert PD, Broad A (1988) In: Aksay IA, McVay GL, Stoebe TG, Wager JF (eds) Atomic & molecular processing of electromic and ceramic materials: preparation, characterization & properties, Material Research Society, Pittsburgh, Pennsylvania, p 89Google Scholar
  7. 7.
    Riehe PC (1988) ibid p.107Google Scholar
  8. 8.
    Yasrebi M, Kim GH, Gunnison KE, Milius DL, Sarigaya M, Aksay IA (1990) Mater Res Soc Proc 180:625CrossRefGoogle Scholar
  9. 9.
    Takahasi M, Yao T, Kokubo T, Minoda M, Miyamoto T, Nakamura T, Yamamoto T (1995) J Biomedical Mater Res 29:349CrossRefGoogle Scholar
  10. 10.
    Mann S (2004) Chem Commun (1):1Google Scholar
  11. 11.
    Nedoluzhko A, Douglas T (2001) Focus on biotechnology, vol 7. Physics and Chemistry, Basis of Biotechnology, p 9Google Scholar
  12. 12.
    Mann S (1995) J Mater Chem 5(7):935CrossRefGoogle Scholar
  13. 13.
    Mann S (1993) Nature 365(6446):499CrossRefGoogle Scholar
  14. 14.
    Yano S (1994) Polymer 35:5565CrossRefGoogle Scholar
  15. 15.
    Yano S, Kodomari M (1996) Nihon Reoroji Gakkaishi 24:15CrossRefGoogle Scholar
  16. 16.
    Hecky RE, Mopper K, Kilham P, Degens ET (1973) Mar Biol 19:323CrossRefGoogle Scholar
  17. 17.
    Kaufman PB, Takeoka Y, Carlson TJ, Bigelow WC, Jones JD, Moore PH, Ghosheh NS (1979) Phytomorphology 29:185Google Scholar
  18. 18.
    Yoshida S, Onishhi Y, Kitagishi K (1959) Soil Plant Food 5:127CrossRefGoogle Scholar
  19. 19.
    Yamamoto K, Baba A, Igarashi T (1957) Niigata Daigaku Nogakubu Gakujutsu Hokoku 9:26Google Scholar
  20. 20.
    Parry DW, Smithon F, (1964) Ann Bot N S 28:169CrossRefGoogle Scholar
  21. 21.
    Jabbar MA, Serajul H (1973) Dacca Univ Stud 21(2, PtB):51Google Scholar
  22. 22.
    Nakamura S, Gillham JK, Tobolsky AV (1970) Rep Prog Polym Phys Jpn XIII:89Google Scholar
  23. 23.
    Takai M, Tsuta Y, Hayashi J, Watanabe S (1975) Polymer J 7:157CrossRefGoogle Scholar
  24. 24.
    Hino T, Mochida K, Okamoto S (1983) Jap J Polym Sci Technol 40:225Google Scholar
  25. 25.
    Huang HH, Orler B, Wilkes GL (1985) Polym Bull 14:557CrossRefGoogle Scholar
  26. 26.
    Moore WJ (1962) Physical chemistry, Maruzen Co. Ltd., p 550Google Scholar
  27. 27.
    Yano S, Iwata K, Kurita K (1998) Mater Sci Eng C6:75CrossRefGoogle Scholar
  28. 28.
    Yano S, Kurita K, Iwata K, Furukawa T, Kodomari M (1998) Polymer 44:3515CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Hideaki Maeda
    • 1
  • Megumi Nakajima
    • 1
  • Toshiki Hagiwara
    • 1
  • Takashi Sawaguchi
    • 1
  • Shoichiro Yano
    • 1
  1. 1.College of Sci. and Technol.Nihon Univ.TokyoJapan

Personalised recommendations