Journal of Materials Science

, Volume 41, Issue 17, pp 5602–5607 | Cite as

Optical studies of ZnO/Ag nanojunctions

  • Shashikant Patole
  • M. Islam
  • R. C. Aiyer
  • Shailaja MahamuniEmail author


Ag/ZnO nano-hetero-junctions were synthesized by an electrochemical route. The optical absorption spectroscopy and photoluminescence studies reveal the reaction mechanism at the junction. Optical absorption spectra indicate presence of well-defined ZnO excitonic feature along with the Ag surface plasmon absorption feature at 400 nm. Moreover, ZnO green photoluminescence appears on junction formation with Ag. Detailed analysis of emission and excitation processes indicate that efficient charge transfer is taking place from ZnO to Ag. Ag is also responsible for creation of levels in the HOMO-LUMO gap of ZnO. This finding may be of relevance so far as p-type doping in ZnO is concerned.


Transmission Electron Microscopic Photograph Electron Dispersive Spectroscopy TOAB Tetraoctylammonium Bromide Excitonic Feature 



We thank K.C. Rustagi for helpful and encouraging discussions. We also thank V.V. Nikesh for help in the experimental work. Financial support by Council of Scientific and Industrial Research, New Delhi is gratefully acknowledged.


  1. 1.
    Subramanian V, Wolf EE, Kamat PV (2003) J Phys Chem B 107:7479CrossRefGoogle Scholar
  2. 2.
    Hirakawa T, Kamat PV (2004) Langmuir 20:5645CrossRefGoogle Scholar
  3. 3.
    Wood A, Giersig M, Mulvaney P (2001) J Phys Chem B 105:8810CrossRefGoogle Scholar
  4. 4.
    Chen S, Nickel U (1996) J Chem Soc Faraday Trans 92:1555CrossRefGoogle Scholar
  5. 5.
    Chen S, Nickel U (1996) Chem Commun 133Google Scholar
  6. 6.
    Ballesteros JM, Solis J, Serna R, Alonso CN (1999) Appl Phys Lett 74:2791CrossRefGoogle Scholar
  7. 7.
    Ma GH, He J, Rajiv K, Tang SH, Yang Y, Nogami M (2004) Appl Phys Lett 84:4084Google Scholar
  8. 8.
    Mahamuni S, Borgohain K, Bendre BS, Leppert VJ, Risbud SH (1999) J Appl Phys 85:2861CrossRefGoogle Scholar
  9. 9.
    Isalm M, Patole S, Aiyer RC and Mahamuni S (to be published)Google Scholar
  10. 10.
    Reetz MT, Helbig WJ (1994) J Am Chem Soc 116:7401CrossRefGoogle Scholar
  11. 11.
    Powder diffraction files (1984) JCPD, p. 783, 663Google Scholar
  12. 12.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction. Prentice Hall, Upper Saddle, NJGoogle Scholar
  13. 13.
    Wang Z, Zhang H, Zhang L, Yuan J, Yan S, Wang C (2003) Nanotechnology 14:11CrossRefGoogle Scholar
  14. 14.
    Taleb A, Petit C, Pileni MP (1998) J Phys Chem B 102:2214CrossRefGoogle Scholar
  15. 15.
    Liang Y, Yoffe AD (1968) Phy Rev Lett 20:59CrossRefGoogle Scholar
  16. 16.
    Hovel H, Fritz S, Hilger A, Kreibig U, Vollmer M (1993) Phys Rev B 48:18178CrossRefGoogle Scholar
  17. 17.
    Boyd GT, Yu ZH, Shen YR (1986) Phy Rev B 33:7923CrossRefGoogle Scholar
  18. 18.
    Lee KC (1985) Surf Sci 163:L759CrossRefGoogle Scholar
  19. 19.
    Andersen PC, Jacobson ML, Rowien KL (2004) J Phys Chem B 108:2148CrossRefGoogle Scholar
  20. 20.
    Wilcoxon JP, Martin JE, Parsapour F, Wiedenman B, Kelley D (1998) J Chem Phys 108:9137CrossRefGoogle Scholar
  21. 21.
    Mooradian A (1969) Phys Rev Lett 22:185CrossRefGoogle Scholar
  22. 22.
    Nikesh VV, Mahamuni S (2001) Semicond Sci Technol 16:687 and references thereinCrossRefGoogle Scholar
  23. 23.
    Bendre BS, Mahamuni S (2004) J Mat Res 19:737CrossRefGoogle Scholar
  24. 24.
    Lee HY, Ko HJ, Yao T (2003) Appl Phys Lett 82:523CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Shashikant Patole
    • 1
  • M. Islam
    • 1
  • R. C. Aiyer
    • 1
  • Shailaja Mahamuni
    • 1
    Email author
  1. 1.Department of PhysicsUniversity of PunePuneIndia

Personalised recommendations