Advertisement

Journal of Materials Science

, Volume 41, Issue 18, pp 5890–5899 | Cite as

Optimization of hardening of Al–Zr–Sc cast alloys

  • N. A. Belov
  • A. N. Alabin
  • D. G. Eskin
  • V. V. Istomin-Kastrovskii
Article

Abstract

The effects of composition, cooling rate after the end of solidification, and annealing regime on the structure and hardening of binary and ternary alloys of the Al–Sc–Zr system are studied. The liquidus in Al–Sc–Zr alloys is experimentally assessed in order to facilitate the correct choice of casting temperatures. The precipitation during slow cooling after the end of solidification causes hardening in the as-cast state and decreases the hardening effect during annealing. It is shown that the full hardening ability of precipitates can be achieved only upon their homogeneous distribution in the matrix. The optimum total concentration of Sc and Zr in aluminium alloys should be about 0.3 wt% at the ratio Zr:Sc ≥ 2. That allows conventional casting temperatures and considerable hardening during annealing.

Keywords

Cool Rate Scandium Supersaturated Solid Solution Maximum Hardness Experimental Alloy 

Notes

Acknowledgement

Authors would like to thank reviewers of this paper for their thorough reading and useful comments.

References

  1. 1.
    Toropova LS, Eskin DG, Kharakterova ML, Dobatkina TV (1998) Advanced aluminum alloys containing scandium: structure and properties. Gordon and Breach/OPA, AmsterdamGoogle Scholar
  2. 2.
    Forbord B, Lefebre W, Danoix F, Hallem H, Marthinsen K (2004) Scr Mater 51:333CrossRefGoogle Scholar
  3. 3.
    Tolley A, Radmilovic V, Dahmen U (2005) Scr Mater 52:621CrossRefGoogle Scholar
  4. 4.
    Fuller CB, Seidman DN, Dunand DC (2003) Acta Mater 51:4803CrossRefGoogle Scholar
  5. 5.
    Forbord B, Hallem H, Marthinsen K (2004) In: Nie JF, Morton AJ, Muddle BC (eds) Proceedings of the 9th International Conference on Aluminium Alloys (ICAA’9), Brisbane, August 2004, p 1179Google Scholar
  6. 6.
    Robson JD (2004) Acta Mater 52:1409CrossRefGoogle Scholar
  7. 7.
    Belov NA, Istomin-Kastrovskii VV, Naumova EA (1996) Izv Vyssh Uchebn Zaved Tsvetn Metall 4: 5Google Scholar
  8. 8.
    Belov NA (1996) Mater Sci Forum 217–222:293CrossRefGoogle Scholar
  9. 9.
    Belov NA, Zolotorevskii VS, Goto S, Alabin AN, Istomin-Kastrovskiy VV, Mishin VI (2004) In: Nie JF, Morton AJ, Muddle BC (eds) Proceedings of the 9th International Conference on Aluminium Alloys (ICAA’9), Brisbane, August 2004, p 533Google Scholar
  10. 10.
    Dobatkin VI (1970) In: Physical metallurgy of light alloys, Nauka, Moscow, p 100Google Scholar
  11. 11.
    Nes E, Billdal H (1977) Acta Metall 25:1031CrossRefGoogle Scholar
  12. 12.
    Norman AF, Prangnell PB, McEwen RS (1998) Acta Mater 46:5715CrossRefGoogle Scholar
  13. 13.
    Novotny GM, Ardell AJ (2001) Mater Sci Eng A A318:144CrossRefGoogle Scholar
  14. 14.
    Nakayama M, Furuta A, Miura Y (1997) Mater Trans JIM 38:852CrossRefGoogle Scholar
  15. 15.
    Marquis EA, Seidman DN (2001) Acta Mater 49:1909CrossRefGoogle Scholar
  16. 16.
    Kendig KL, Miracle DB (2002) Acta Mater 50:4165CrossRefGoogle Scholar
  17. 17.
    Martin JW (1980) Micromechanisms in particle-hardened alloys. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • N. A. Belov
    • 1
  • A. N. Alabin
    • 1
  • D. G. Eskin
    • 2
  • V. V. Istomin-Kastrovskii
    • 1
  1. 1.Moscow Institute of Steel and AlloysMoscowRussia
  2. 2.Netherlands Institute for Metals ResearchDelftThe Netherlands

Personalised recommendations