Journal of Materials Science

, Volume 41, Issue 18, pp 5882–5889 | Cite as

Shear induced phase coarsening in Polystyrene/Styrene-ethylene-butylene-styrene blends

  • Yong Wang
  • Cong Wang
  • Qin Zhang
  • Hong Yang
  • Rongni Du
  • Qiang FuEmail author


The phase behavior of polymer blends under the effect of shear has been a subject of considerable interest from the viewpoint of both theoretical research and industrial application, because the shear stress is unavoidable during processing. In this work, we reported the change of phase behavior and mechanical properties of Polystyrene (PS)/Styrene-ethylene-butylene-styrene (SEBS) blends achieved via a shear-assistant injection molding, which was called dynamic packing injection molding (DPIM). The size of dispersed SEBS particles in PS matrix was found to be increased for the samples obtained by dynamic packing injection molding (DPIM), compared with those obtained by conventional molding, indicating a shear induced phase coarsening. The shear induced phase coarsening can be further demonstrated by the decrease of impact strength of dynamic packing injection molded samples. However, the shear-induced phase coarsening will be eliminated after annealing the samples at high temperature for certain time. The particle size, which related to the capability to deform under the effect of shear, was found to play an important role to determine the phase morphology. Our result suggested that shear stress induced phase coarsening was a process of not only molecular configuration change but also deformation change under shear.


Impact Strength Phase Behavior Lower Critical Solution Temperature Polymer Blend Phase Morphology 



We would like to express our sincere thanks to National Natural Science Foundation of China (20274028, 50373030 and 20490220) for Financial Support. This work is also partly supported by Ministry of Education of China for Doctoral Degree (20020610004).


  1. 1.
    Olabisi O, Robeson LM, Shaw MT (1979) Polymer-polymer miscibility. Academic Press, New YorkGoogle Scholar
  2. 2.
    Utracki LA (1989) Polymer alloys and blends: Thermodynamics and rheology. Hanser, New YorkGoogle Scholar
  3. 3.
    Hashimoto T, Kumaki J, Kawai H (1983) Macromolecules 16:641CrossRefGoogle Scholar
  4. 4.
    Snyder HL, Meakin P, Reich S (1983) Macromolecules 16:757CrossRefGoogle Scholar
  5. 5.
    Rangel-Nafaile C, Metzner A, Wissburn K (1984) Macromolecules 17:1187CrossRefGoogle Scholar
  6. 6.
    Hindawi I, Higgins JS, Weiss RA (1990) Macromolecules 23:670CrossRefGoogle Scholar
  7. 7.
    Cheikh L, Malone FB, Winter MF (1988) Macromolecules 21:3532CrossRefGoogle Scholar
  8. 8.
    Katsaros FD, Malone MF, Winter HH (1986) Polym Bull 16:83CrossRefGoogle Scholar
  9. 9.
    Nakatani AI, Kim H, Takahashi Y (1990) J Chem Phys 93:795CrossRefGoogle Scholar
  10. 10.
    Katsaros FD, Malone MF, Winter HH (1989) Polym Eng Sci 29:1434CrossRefGoogle Scholar
  11. 11.
    Yui SH, Li H, Inoue T (1998) Polymer 39:5265CrossRefGoogle Scholar
  12. 12.
    Okamoto M, Shiomi K, Inoue T (1995) Polymer 36:87CrossRefGoogle Scholar
  13. 13.
    Wang Y, Zou H, Fu Q, Zhang G, Shen K, Thomann R (2002) Macromol Rapid Commun 23:749CrossRefGoogle Scholar
  14. 14.
    Fernandez ML, Higgins JS, Richardson SM (1995) Polymer 36:931CrossRefGoogle Scholar
  15. 15.
    Lyngaae-Jorgensen J, Sondergaard K (1987) Polym Eng Sci 27:344CrossRefGoogle Scholar
  16. 16.
    Lyngaae-Jorgensen J, Sondergaard K (1987) Polym Eng Sci 27:351CrossRefGoogle Scholar
  17. 17.
    Hindawi I, Higgins JS, Weiss RA (1992) Polymer 33:2522CrossRefGoogle Scholar
  18. 18.
    Lei C, Li GX, Yang Q, Chen DH, Jiang SJ (2003) J Polym Sci, Part B, Polym Phys 41:661CrossRefGoogle Scholar
  19. 19.
    Francesco P, Mauro A, Elisa P, Francesco C (2002) Polymer 43:3323CrossRefGoogle Scholar
  20. 20.
    Allen PS, Bevis MJ, UK Pat. 2,170,140B; Euro. Pat, EPO, 188,120B1; U.S. Pat. 4,925,161 (1986)Google Scholar
  21. 21.
    Allan PS, Bevis MJ, British Patent 2170–140–BGoogle Scholar
  22. 22.
    Allan PS, Bevis MJ (1987) Plastics Rubber Process Appl 7:3Google Scholar
  23. 23.
    Allan PS, Bevis MJ (1990) Compos Manuf 1:79CrossRefGoogle Scholar
  24. 24.
    Kalay G, Allan PS, Bevis MJ (1994) Polymer 35:2480CrossRefGoogle Scholar
  25. 25.
    Ogbonna CI, Kalay G, Allan P, Bevis MJ (1995) J Appl Polym Sci 58:2131CrossRefGoogle Scholar
  26. 26.
    Kalay G, Zhong Z, Allan P, Bevis MJ (1996) Polymer 37:2077CrossRefGoogle Scholar
  27. 27.
    Wang Y, Fu Q, Li QJ, Zhang G, Shen KZ, Wang YZ (2002) J Polym Sci Part B Polym Phys 40:2086CrossRefGoogle Scholar
  28. 28.
    Janeschitz-Kriegl H, Eder G (1990) J Macromol Sci-Chem A27:1733Google Scholar
  29. 29.
    Horst R, Wolf BA (1991) Macromolecules 24:2236CrossRefGoogle Scholar
  30. 30.
    Horst R, Wolf BA (1992) Macromolecules 25:5291CrossRefGoogle Scholar
  31. 31.
    Horst R, Wolf BA (1993) Macromolecules 26:5676CrossRefGoogle Scholar
  32. 32.
    Katsaros JD, Malone MF, Winter HH (1989) Polym Bull 29:1434Google Scholar
  33. 33.
    Taylor GI (1934) Proc R Soc Lond, A 146:501CrossRefGoogle Scholar
  34. 34.
    Grace HP (1982) Chem Engng Commun 14:225CrossRefGoogle Scholar
  35. 35.
    Tokita N (1977) Elastomer Chem Technol 50:292Google Scholar
  36. 36.
    Wu SH (1971) J Polymer Sci Part C 34:19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Yong Wang
    • 1
    • 2
  • Cong Wang
    • 1
  • Qin Zhang
    • 1
  • Hong Yang
    • 1
  • Rongni Du
    • 1
  • Qiang Fu
    • 1
    Email author
  1. 1.Department of Polymer Science and MaterialsSichuan University, State Key Laboratory of Polymer Materials EngineeringChengduChina
  2. 2.College of Materials Science and EngineeringSouthwest Jiaotong UniversityChengduChina

Personalised recommendations