Journal of Materials Science

, Volume 41, Issue 18, pp 5937–5940 | Cite as

Epitaxial growth of ZnO films on (100) and (001) γ-LiAlO2 substrates by pulsed laser deposition

  • Jun ZouEmail author
  • Shengming ZhouEmail author
  • Jun Xu
  • Xia Zhang
  • Xiaomin Li
  • Zili Xie
  • Ping Han
  • Rong Zhang


Structural and optical properties were investigated for ZnO films grown on (100) and (001) γ-LiAlO2 (LAO) substrates by pulsed laser deposition method. According XRD results, it is intuitionistic that (100) LAO is suitable for fabricating high quality ZnO film, while (001) LAO is unsuitable. The FWHM of XRD, stress in film and FWHM of UV PL spectra for ZnO films on (100) LAO show a decreasing with increasing substrate temperature from 300 to 600 °C. ZnO film fabricated at 600 °C has the greatest grain size, the smallest stress (0.47 Gpa) and PL FWHM value (∼85 meV). This means that the substrate temperature of 600 °C is optimum for ZnO film deposited on (100) LAO. Moreover, it was found that the UV PL spectra intensity of ZnO film is not only related to the grain size and stoichiometric, but also depends on the stress in the film.


Substrate Temperature Pulse Laser Deposition Biaxial Stress Increase Substrate Temperature Film Stress 



This work was supported by the program of “Hundreds of Talents” of CAS and the national “863” project (2004AA311080).


  1. 1.
    Srikant V, Clarke DR (1998) J Appl Phys 83:5447CrossRefGoogle Scholar
  2. 2.
    Zu P, Tang ZK, Wong GKL, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (1997) Solid State Commun 103:459CrossRefGoogle Scholar
  3. 3.
    Hayamizu S, Tabata H, Tanaka H, Kawai T (1996) J Appl Phys 80:787CrossRefGoogle Scholar
  4. 4.
    Sun XW, Kwork HS (1999) J Appl Phys 86:408CrossRefGoogle Scholar
  5. 5.
    Ondo-Ndong R, Ferblantier G, Alfalfioui M, Boyer A, Foucaran A (2003) J Crystal Growth 255:130CrossRefGoogle Scholar
  6. 6.
    Li BS, Liu YC, Chu ZS, Shen DZ, Lu YM, Zhang JY, Fan XW (2002) J Appl Phys 91:501CrossRefGoogle Scholar
  7. 7.
    Ma Y, Du GT, Yang SR, Li ZT, Zhao BJ, Yang XT, Yang TP, Zhang YT, Liu DL (2004) J Appl Phys 95:6268CrossRefGoogle Scholar
  8. 8.
    Paul GK, Sen SK (2002) Matter Lett 57:742CrossRefGoogle Scholar
  9. 9.
    Paraguay DF, Estrada LW, Acosta NDR, Andrade E, Miki-Yoshida M (1999) Thin Solid Films 350:192CrossRefGoogle Scholar
  10. 10.
    Fan XM, Lian JS, Guo ZX, Lu HJ (2005) Appl Surf Sci 239:176CrossRefGoogle Scholar
  11. 11.
    J-L Zhao, X-M Li, J-M Bian, W-D Yu, X-D Gao (2005) J Crystal Growth 276(3–4):507CrossRefGoogle Scholar
  12. 12.
    Bang KH, Hwang DK, Jeong MC, Sohn KS, Myoung JM (2003) Solid State Commun 126:623CrossRefGoogle Scholar
  13. 13.
    Lee GH (2003) Solid State Commun 128:351CrossRefGoogle Scholar
  14. 14.
    Reed MD, Kryliouk OM, Mastro MA, Anderson TJ (2005) J Cryst Growth 274:14CrossRefGoogle Scholar
  15. 15.
    Service RF (1997) Science 276:895CrossRefGoogle Scholar
  16. 16.
    Madelung O (1992) Data in science and technology, semiconductors other than group IV elements and III–V compounds. Springer, BerlinGoogle Scholar
  17. 17.
    Cho SL, Ma J, Kim YK, Sun Y, Wong GKL, Ketterson JB (1999) Appl Phys Lett 75:2761CrossRefGoogle Scholar
  18. 18.
    Shionoya S, Yen WM (eds.) (1999) Phosphor handbook. Chemical Rubber, ClevelandGoogle Scholar
  19. 19.
    Ye JD, Gu Sl, Zhu SM, Liu SM, Liu W, Zhou X, Hu LQ, Zhang R, Shi Y, Zheng YD (2005) J Cryst Growth 274:489CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina
  2. 2.Graduate school of Chinese Academy of ScienceBeijingChina
  3. 3.Shanghai Institute of CeramicsChinese Academy of ScienceShanghaiChina
  4. 4.Department of PhysicsNanjing UniversityNanjingChina

Personalised recommendations