Advertisement

Journal of Materials Science

, Volume 41, Issue 17, pp 5569–5575 | Cite as

Microstructuring of stainless steel implants by electrochemical etching

  • M. Stöver
  • M. Renke-Gluszko
  • T. Schratzenstaller
  • J. Will
  • N. Klink
  • B. Behnisch
  • A. Kastrati
  • R. Wessely
  • J. Hausleiter
  • A. Schömig
  • E. Wintermantel
Article

Abstract

The effects of electrochemically enhanced etching on stainless steel coronary stent surfaces have been investigated in respect to their applicability as surface modifications prior drug-coating. Two methods have been investigated, one basing on grain boundary etching with diluted HNO3 and the other one on hydrochloric acid etching. The etching current was in the range of 30–200 mA which accounts for 0.34–2.28 mA/mm² surface. Grain boundary etching produced a micro-furrowed surface providing volume for the coating drug. The theoretical volume offered by the furrows was calculated on the basis of laser perthometry and was determined to be 0.146 mm³/cm². With the hydrochloric acid etching method it was possible to generate an evenly rough, terraced surface. Both surfaces have been coated with Rapamycin in ethanol (20 mg/mL) and examined under SEM after dilatation. It was shown that a uniform drug layer is maintained after dilatation of the stent and little flaking is visible. Quantification of the amount of Rapamycin yielded 21.4 μg/mm² for the electropolished stents, 36.6 μg/mm² for the grain-boundary etched stents and 27.7 μg/mm² for the hydrochloric acid etching after dilatation. For the grain boundary etched stents an improved drug adhesion was found, while the hydrochloric acid etchings resulted in a deterioration of the adhesion properties.

Keywords

Rapamycin Adhesion Test Coating Behaviour Etching Solution Etching Method 

Notes

Acknowledgements

This study is funded by the Bayerische Forschungsstiftung, Munich, Germany. The authors would like to thank Minitubes, France for kindly delivering the stent raw material.

References

  1. 1.
    Holmes J, David R (2003) Am J Cardiol 91(3, Supplement 1):50CrossRefGoogle Scholar
  2. 2.
    Fattori R, Piva T (2003) Lancet 361(9353):247CrossRefGoogle Scholar
  3. 3.
    Wombacher R (2003) Polymere als Beschichtungsmaterialien für StentsGoogle Scholar
  4. 4.
    Wen J, Kim GJ, Leong KW (2003) J Control Release 92(1–2):39CrossRefGoogle Scholar
  5. 5.
    Choudhury PR (1997) Handbook of microlithography, micromachining and microfabrication, vol 1 and 2, Inspec/IeeGoogle Scholar
  6. 6.
    Cihal V, Prazak M (1959) Corrosion and metallographic study of stainless steels using potentiostat techniques. J Iron Steel Inst, pp 360−367Google Scholar
  7. 7.
    Voort V (1984) Metallography, principles and practice. MacGraw-Hill Book CompanyGoogle Scholar
  8. 8.
    Schmickler W (1993) In: Lipkowsky J, Ross PN (eds) Structure of electrified interfaces. VCH Publ. Inc., New York, pp 201–238Google Scholar
  9. 9.
    Bell FC, Sonon DE (1976) Metallography 9(2):91CrossRefGoogle Scholar
  10. 10.
    Kirchner V (2001) Mikrostrukturierung von Edelstahl mit ultrakurzen Spannungspulsen. p 57Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • M. Stöver
    • 1
  • M. Renke-Gluszko
    • 1
  • T. Schratzenstaller
    • 1
  • J. Will
    • 1
  • N. Klink
    • 1
  • B. Behnisch
    • 2
  • A. Kastrati
    • 3
  • R. Wessely
    • 3
  • J. Hausleiter
    • 3
  • A. Schömig
    • 3
  • E. Wintermantel
    • 1
  1. 1.Central Institute for Medical EngineeringGarchingGermany
  2. 2.Translumina GmbHHechingenGermany
  3. 3.Deutsches Herzzentrum MünchenMunichGermany

Personalised recommendations