Journal of Materials Science

, Volume 42, Issue 8, pp 2854–2861 | Cite as

Fabrication of cellular and microcellular ceramics with controllable open-cell content from polysiloxane-LDPE blends: I. Compounding and Foaming

  • Chunmin WangEmail author
  • Jin Wang
  • Chul B. Park
  • Young-Wook Kim


A novel processing route for fabricating cellular and microcellular ceramics with controllable open-cell content has been developed. The proposed strategy for producing cellular and microcellular ceramics involves: (i) development of desired foamable polysiloxane–polyolefin blends by using a compounder element, in which the polyolefin phase is uniformly dispersed in the polysiloxane matrix, (ii) foaming the obtained blends by implementing the thermodynamic instability principle to produce a cellular or microcellular ceramic precursor structure, and (iii) completing the organic–inorganic transition without sacrificing the obtained cellular or microcellular structure and inducing open-channels in the cell walls by burning out the sacrificial dispersed polyolefin phase at elevated temperatures. By controlling the viscosity of the dispersed polyolefin phase, the polyolefin concentration and compounding parameters, the polysiloxane–polyolefin blend morphology can be varied. Furthermore, plus a deliberate control of foaming and pyrolyzing parameters, the foam morphology and open-cell content of produced cellular and microcellular ceramics can be adjusted. In this paper, the technique to get a desired cellular and microcellular ceramic precursor structure is demonstrated. The deliberate pyrolysis technique to complete the organic–inorganic transition and the mechanical properties of the obtained microcellular ceramics will be discussed in another paper.


Foam LDPE Polysiloxane Viscosity Ratio Ceramic Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work at the University of Seoul was supported by the Center for Advanced Materials Processing (21C Frontier R&D Program of the Ministry of Commerce, Industry, and Energy, Republic of Korea).


  1. 1.
    Saggio-Woyansky J, Scott CE, Minnear WP (1992) Am Ceram Soc Bull 71:1674Google Scholar
  2. 2.
    Nettleship I (1996) Key Eng Mater 122–124:305CrossRefGoogle Scholar
  3. 3.
    Lange FF, Miller KT (1987) Adv Ceram Mater 2:827CrossRefGoogle Scholar
  4. 4.
    Zhang GJ, Yang JF, Ohji T (2001) ibid 84:1395Google Scholar
  5. 5.
    Nangrejo MR, Bao X, Edirisinghe MJ (2000) J Mat Sci Lett 19:787CrossRefGoogle Scholar
  6. 6.
    Colombo P, Modesti M (1999) J Am Ceram Soc 82:573CrossRefGoogle Scholar
  7. 7.
    Sepulveda P, Binner JGP (1999) J Eur Ceram Soc 19:2059CrossRefGoogle Scholar
  8. 8.
    Sepulveda P (1997) Am Ceram Soc Bull 76:61Google Scholar
  9. 9.
    Peng HX, Fan Z, Evans JRG, Busfield JJC (2000) J Eur Ceram Soc 20:807CrossRefGoogle Scholar
  10. 10.
    Wu W, Fujiu T, Messing GL (1990) J Non-Cryst Solids 121:407CrossRefGoogle Scholar
  11. 11.
    Fujiu T, Messing GL, Huebner W (1990) J Am Ceram Soc 73:85CrossRefGoogle Scholar
  12. 12.
    Sherman AJ, Tuffias RH, Kaplan RB (1990) Am Ceram Soc Bull 70:1025Google Scholar
  13. 13.
    Green DJ (1985) J Am Ceram Soc 68:403CrossRefGoogle Scholar
  14. 14.
    Aoki Y, Mcenaney B (1995) Br Ceram Trans 94:133Google Scholar
  15. 15.
    Colombo P, Bernardo E (2003) Comp Sci Tech 63:2353CrossRefGoogle Scholar
  16. 16.
    Kim Y-W, Kim SH, Kim HD, Park CB (2004) J Mater Sci 39:5647CrossRefGoogle Scholar
  17. 17.
    Kim Y-W, Park CB, (2003) Comp Sci Tech 63:2371CrossRefGoogle Scholar
  18. 18.
    Kim Y-W, Kim SH, Xu X, Choi CH, Park CB, Kim HD (2002) J Mater Sci Lett 21:1667CrossRefGoogle Scholar
  19. 19.
    Kim Y-W, Kim SH, Wang C, Park CB (2003) J Am Ceram Soc 86:2231CrossRefGoogle Scholar
  20. 20.
    Wang C, Wang J, Park CB, Kim Y-W (2004) J Mater Sci Lett 39:4913CrossRefGoogle Scholar
  21. 21.
    Naguib HE, Park CB, Panzer U, Reichelt N (2002) Polym Eng Sci 42:1481CrossRefGoogle Scholar
  22. 22.
    Naguib HE, Park CB, Reichelt N (2004) J Appl Polym Sci 91:2661CrossRefGoogle Scholar
  23. 23.
    FAVIS BD (2000) In: Paul DR, Bucknall CB (eds) Polymer blends. John Wiley & Sons, New York, p 501, FormulationGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Chunmin Wang
    • 1
    Email author
  • Jin Wang
    • 1
  • Chul B. Park
    • 1
  • Young-Wook Kim
    • 2
  1. 1.Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of Materials Science and EngineeringThe University of SeoulSeoulKorea

Personalised recommendations