Journal of Materials Science

, Volume 41, Issue 21, pp 6938–6948 | Cite as

Mechanical behavior of cement-based materials reinforced with sisal fibers

  • H. Jr Savastano
  • A. Turner
  • C. Mercer
  • W. O. SoboyejoEmail author


Fiber-reinforced cement composites were produced in Brazil using blast furnace slag cement reinforced with pulped fibers of sisal originated from agricultural by-products. Thin pads were produced by slurring the raw materials in water, followed by de-watering and pressing stages. Studies of mechanical behavior included observations of stable crack growth behavior under monotonic loading (resistance-curve behavior), followed by scanning electron microscopy (SEM) analysis of the fracture surfaces. Reinforcement with cellulose fibers resulted in improved fracture toughness, even after 9 months in laboratory environment. Microscopic analysis indicated a considerable incidence of crack bridging and fiber pull-out in the composite. The shielding contributions from crack bridging are estimated using a fracture mechanics model, before comparing with the measured resistance-curve behavior.


Fracture Toughness Stress Intensity Factor Natural Fiber Blast Furnace Slag Cement Matrix 



The research is supported by the Materials Division of the National Science Foundation (Grant Number DMR 0231418 and DMR 0303492). The authors are grateful to Dr. Carmen Huber of NSF for her encouragement. The authors would also like to thank Mr. Victor Odunsi for his support. Appreciation is extended to Dr. Marie Ange Arsène and to Mr. Jun Lou for useful discussions, and their help on the bridging models. The first author also express his gratitude to the National Council for Scientific and Technological Development (CNPq) and the Co-ordination for the Improvement of Higher Education Personnel (Capes) for their support, and to Mr. Leandro Cunha and Mr. Paulo Silva for their skilful assistance at the Laboratory of Rural Construction of University of São Paulo, Brazil. Finally, the authors would like to thank Dr. Seyed Allameh for assistance with scanning electron microscopy techniques.


  1. 1.
    Swamy RN (ed) (1988) Natural fibre reinforced cement and concrete. Blackie, GlasgowGoogle Scholar
  2. 2.
    Coutts RSP, Ni Y (1995) Cem Concr Compos 17:99CrossRefGoogle Scholar
  3. 3.
    Savastano H Jr, Warden PG, Coutts RSP (2003) Cem Concr Compos 25:311CrossRefGoogle Scholar
  4. 4.
    Bilba K, Arsene M-A, Ouensanga A (2003) Cem Concr Compos 25:91CrossRefGoogle Scholar
  5. 5.
    Eusebio DA, Cabangon RJ, Warden PG, Coutts RSP (1998) In: Hadi YS (ed) Proceedings of the 4th Pacific Rim Bio-Based Composites Symposium, Bogor, November 1998, Bogor Agricultural University, Bogor, p 428Google Scholar
  6. 6.
    Savastano H Jr, Warden PG, Coutts RSP (2000) Cem Concr Compos 22:379CrossRefGoogle Scholar
  7. 7.
    Savastano H Jr, Agopyan V, Nolasco AM, Pimentel L (1999) Constr Build Mater 13:433CrossRefGoogle Scholar
  8. 8.
    John VM, Zordan SE (2001) Waste Manage 21:213CrossRefGoogle Scholar
  9. 9.
    Heinricks H, Berkenkamp R, Lempfer K, Ferchland H-J (2000) In: Moslemi AA (ed) Proceedings of the 7th International inorganic-bonded wood and fiber composite materials conference, Sun Valley, September 2000, University of Idaho, Moscow, 2000, 12 p (Siempelkamp Handling Systems report)Google Scholar
  10. 10.
    Savastano H, Jr, Agopyan V, John VM (2000) In: John VM, Agopyan V (eds) Proceedings of the CIB Symposium on construction & environment, São Paulo, November 2000, CIB-Escola Politécnica da Universidade de São Paulo, São Paulo, 10 pGoogle Scholar
  11. 11.
    Coutts RSP (1988) In: Natural Fibre Reinforced Cement and Concrete, Blackie, Glasgow, p 1Google Scholar
  12. 12.
    Coutts RSP (1992) In: Swamy RN (ed) Proceedings of the 4th International Symposium on fibre reinforced cement and concrete, Sheffield, July 1992, E & FN Spon, London, p 31Google Scholar
  13. 13.
    Savastano H Jr, Warden PG, Coutts RSP (2001) Cem Concr Compos 23:389CrossRefGoogle Scholar
  14. 14.
    Agopyan V, John VM (1992) Build Res Informat 20:233CrossRefGoogle Scholar
  15. 15.
    Savastano H Jr, Warden PG, Coutts RSP (2001) In: Duncan J (ed) Proceedings of the CIB world building congress, Wellington, April 2001, Branz, Wellington, 11 pGoogle Scholar
  16. 16.
    Shah SP and Marikunte SS (1993) In Proceedings of the 1st ACBM annual faculty enhancement workshop, Evanston, July 1993, NSF-ACBM Center, Evanston, ch. 8, p. 226Google Scholar
  17. 17.
    Balaguru PN, Shah SP (1992) Fiber-reinforced cement composites. McGraw-Hill, New YorkGoogle Scholar
  18. 18.
    Eissa A-B, Batson G (1996) Cem Concr Compos 18:125CrossRefGoogle Scholar
  19. 19.
    Higgins HG (1996) Paper physics in Australia. CSIRO Division of Forestry and Forest Products, MelbourneGoogle Scholar
  20. 20.
    American Society for Testing and Materials (1997) Standard practice for atmospheric environmental exposure testing of nonmetallic materials G7–97, ASTM, West Conshohocken, Book of Standards v. 14.04, 7 pGoogle Scholar
  21. 21.
    Wang S-D, Pu X-C, Scrivener KL, Pratt PL (1995) Adv Cem Res 7:93CrossRefGoogle Scholar
  22. 22.
    Taylor HFW (1997) Cement chemistry. Thomas Telford, LondonCrossRefGoogle Scholar
  23. 23.
    Gram HE (1988) In: Natural fibre reinforced cement and concrete. Blackie, Glasgow, p 143Google Scholar
  24. 24.
    Savastano H Jr, Agopyan V (1999) Cem Concr Compos 21:49CrossRefGoogle Scholar
  25. 25.
    Tolêdo Filho RD, Scrivener K, England GL, Ghavami K (2000) Cem Concr Compos 22:127CrossRefGoogle Scholar
  26. 26.
    Bentur A, Akers SAS (1989) Int J Cem Compos Lightweight Concr 11:99CrossRefGoogle Scholar
  27. 27.
    Oliveira CTA, John VM, Agopyan V (1999) In: Proceedings of the 2nd international conference on alkaline cements and concretes, Kiev, May 1999, Kiev State Technical University of Construction and Architecture, Kiev, p 18Google Scholar
  28. 28.
    Soboyejo WO, Venkateswara Rao KT, Sastry SML, Ritchie RO (1993) Metall Trans A 24A:585CrossRefGoogle Scholar
  29. 29.
    American Society for Testing and Materials (1997) Standard test method for plane-strain fracture toughness of metallic materials E399–90, ASTM, West Conshohocken, Book of Standards v. 03.01, 31 pGoogle Scholar
  30. 30.
    Soboyejo WO (2002) In: Mechanical properties of engineered materials, Marcel Dekker Publishers, New York, p 414Google Scholar
  31. 31.
    Budiansky B, Amazigo JC, Evans AG (1988) J Mech Phys Solids 36:167CrossRefGoogle Scholar
  32. 32.
    Li M, Soboyejo WO (2000) Metall Mater Trans A 31A:1385CrossRefGoogle Scholar
  33. 33.
    Kung E, Mercer C, Allameh S, Popoola O, Soboyejo WO (2001) Metall Mater Trans A 32A:1997CrossRefGoogle Scholar
  34. 34.
    Lou J, Soboyejo WO (2001) Metall Mater Trans A 32A:325CrossRefGoogle Scholar
  35. 35.
    Bloyer DR, Venkateswara Rao KT, Ritchie RO (1998) Metall Mater Trans A 29A:2483CrossRefGoogle Scholar
  36. 36.
    Bloyer DR, Venkateswara Rao KT, Ritchie RO, (1999) Metall Mater Trans A 30A:633CrossRefGoogle Scholar
  37. 37.
    Fett T, Munz D (1994) Stress intensity factors and weight functions for one-dimensional cracks, Institut fur Materialforschung, Kernforschungszentrum Karlsruhe. Report KfK 5290Google Scholar
  38. 38.
    Visalvanich K, Naaman AE (1981) J Eng Mech Div 107:1155Google Scholar
  39. 39.
    Castro J, Naaman AN (1981) ACI J 78:69Google Scholar
  40. 40.
    Banthia N, Sheng J (1996) Cem Concr Compos 18:251CrossRefGoogle Scholar
  41. 41.
    Ouyang C, Shah SP (1992) Cem Concr Res 22:1201CrossRefGoogle Scholar
  42. 42.
    Beaudoin JJ (1990) Handbook of fiber-reinforced concrete: principles, properties, developments and applications. Noyes, Park RidgeGoogle Scholar
  43. 43.
    Gatto EG, Kawabata CY, Savastano H Jr, (2003) J Braz Soc Agric Eng 23:211 (in Portuguese)Google Scholar
  44. 44.
    Tolêdo Filho RD, Ghavami K, England GL, Scrivener K (2003) Cem Concr Compos 25:185CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • H. Jr Savastano
    • 1
  • A. Turner
    • 2
  • C. Mercer
    • 2
  • W. O. Soboyejo
    • 2
    Email author
  1. 1.Rural Construction Group, Faculty of Animal Science and Food EngineeringUniversity of São PauloPirassunungaBrazil
  2. 2.Princeton Materials Institute and The Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA

Personalised recommendations