Advertisement

Journal of Materials Science

, Volume 41, Issue 18, pp 6185–6188 | Cite as

Effect of CaF2 on the sintering and thermal expansion of La0.85Sr0.15Cr0.95O3

  • Xifeng Ding
  • Lucun Guo
Letter

Lanthanum chromite based perovskite have been widely accepted as ceramic interconnects and as protecting layers for metallic interconnects in solid oxide fuel cells (SOFCs) because of thier high electronic conductivity, chemical stability in both oxidizing and reducing atmospheres as well as their chemical and thermo-mechanical compatibility with other cell components under operating conditions [1, 2]. Strontium-doped LaCrO3 has emerged as a primary candidate for SOFC interconnects over other alkaline earth oxides such as CaO and MgO [3]. From the viewpoint of compatibility of thermal expansion among SOFC components, Sr-doped lanthanum chromite can match the coefficient of thermal expansion (CTE) to the Y2O3-stabilized ZrO2 (YSZ) electrolyte using less than 20 mol% Sr [4].

Lanthanum chromite interconnects must be a dense in order to separate fuel gas from the oxidizing agent. They are usually sintered above 1,600 °C to reach a 94% relative density [5]. From cost considerations...

Keywords

Perovskite Sinter Temperature CaF2 LaF3 LaCrO3 

References

  1. 1.
    Mori M, Yamamoto T, Ichikawa T, Takeda Y (2002) Solid State Ionics 148:93CrossRefGoogle Scholar
  2. 2.
    Yakokawa H, Sakai N, Kawada T et al (1991) J Electrochem Soc 138(4):1018CrossRefGoogle Scholar
  3. 3.
    Mori M, Hiei Y (2001) J Am Ceram Soc 84(11):2573CrossRefGoogle Scholar
  4. 4.
    Mori, Yamamoto T, Itoh H, Watanabe T (1997) J Mater Sci 32(9):2233CrossRefGoogle Scholar
  5. 5.
    Mori M, Sammes MN (2002) Solid State Ionics 123:301CrossRefGoogle Scholar
  6. 6.
    Sakai N, Kawada T, Yakokawa H, Dokiya M, Kojima I (1993) J Am Ceram Soc 76(3):609CrossRefGoogle Scholar
  7. 7.
    Chakraborty A, Basu RN, Maiti HS (2000) Mater Lett 45:162CrossRefGoogle Scholar
  8. 8.
    Simner SP, Hardy JS, Stevenson JW, Armstrong TR (2000) Solid State Ionics 128:53CrossRefGoogle Scholar
  9. 9.
    Ninh NQ (1993) J Am Ceram Soc 76(3):563CrossRefGoogle Scholar
  10. 10.
    Mori M, Hiei Y, Sammes NM (1999) Solid State Ionics 123:103CrossRefGoogle Scholar
  11. 11.
    Mori M, Hiei Y, Sammes NM (2000) Solid State Ionics 135:743CrossRefGoogle Scholar
  12. 12.
    Armstrong TR, Stevenson JW et al (1996) J Electrochem Soc 143(9):2919CrossRefGoogle Scholar
  13. 13.
    Mori M, Hiei Y, Yamamoto T (2001) J Am Ceram Soc 84(4):781CrossRefGoogle Scholar
  14. 14.
    Hirano M, Oda T (2002) J Am Ceram Soc 85(5):1336CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNanjing University of TechnologyNanjing, JiangsuPeople’s Republic of China

Personalised recommendations