Advertisement

Journal of Materials Science

, Volume 41, Issue 14, pp 4420–4433 | Cite as

Spherical-aberration correction in tandem with the restoration of the exit-plane wavefunction: synergetic tools for the imaging of lattice imperfections in crystalline solids at atomic resolution

  • Karsten TillmannEmail author
  • Lothar Houben
  • Andreas Thust
  • Knut Urban
Article

Abstract

With the availability of resolution-boosting and delocalization-minimizing techniques, aberration-corrected high-resolution transmission electron microscopy is currently enjoying great popularity with respect to the atomic scale imaging of lattice imperfections in crystalline solid-state materials. In the present review, the most striking practical benefits arising from the synergetic combination of two sophisticated state-of-the-art techniques, i.e. spherical-aberration-corrected imaging as well as the numerical restoration of the exit-plane wavefunction from a focal series of high-resolution micrographs, are illustrated by highlighting their combined use for the atomic-scale characterization of misfit dislocations, stacking faults and grain boundaries in common semiconductor materials and metastable metal phases. For these purposes recent progress is reviewed in the atomic-scale characterization of (i) Lomer-type misfit dislocations at InxGa1-xAs/GaAs heterointerfaces and extrinsic stacking fault ribbons in GaAs together with the associated lattice displacements [Tillmann et al. (2004) Microsc Microanal 10:185], (ii) the core structure of chromium implantation-induced Frank partial dislocations in GaN [Tillmann et al. (2005) Microsc Microanal 11:534] as well as (iii) tilt boundaries between β-phase Ta crystallites in thin metallization layers [Tillmann et al. (2006) Phil Mag, in press]. In addition, practical advantages are demonstrated of the retrieval of the exit-plane wavefunction not only for the measurement and subsequent elimination of residual lens aberrations still present in aberration-corrected microscopy, but also for the proper alignment of specimens during operation of the electron microscope.

Keywords

Dislocation Core Contrast Feature Atom Column Focal Series Dislocation Core Structure 

Notes

Acknowledgements

The authors are grateful to Arno Förster, Vitaly Guzenko, Martin Weides and Doris Meertens for making available the samples investigated in this compilation and for painstaking specimen preparation work.

References

  1. 1.
    Tillmann K, Thust A, Urban K (2004) Microsc Microanal 10:185CrossRefGoogle Scholar
  2. 2.
    Tillmann K, Houben L, Thust A (2006) Phil Mag (in press)Google Scholar
  3. 3.
    Tillmann K, Thust A, Gerber A, Weides MP, Urban K (2005) Microsc Microanal 11:534CrossRefGoogle Scholar
  4. 4.
    Kisielowski C, Hetherington CJD, Wang YC, Kilaas R, O’Keefe MA, Thust A (2001) Ultramicroscopy 89:243CrossRefGoogle Scholar
  5. 5.
    O’Keefe MA, Nelson EC, Wang EC, Thust A (2001) Phil Mag B 71:1861CrossRefGoogle Scholar
  6. 6.
    Freitag B, Kujawa S, Mul PM, Ringnalda J, Tiemeijer PC (2005) Ultramicroscopy 102:209CrossRefGoogle Scholar
  7. 7.
    Jia CL, Lentzen M, Urban K (2003) Science 299:870CrossRefGoogle Scholar
  8. 8.
    Jia CL, Lentzen M, Urban K (2004) Microsc Microanal 10:174CrossRefGoogle Scholar
  9. 9.
    Hutchison JL, Titchmarsh JM, Cockayne DJH, Doole RC, Hetherington CJD, Kirkand AI, Sawada H (2005) Ultramicroscopy 103:7CrossRefGoogle Scholar
  10. 10.
    Lichte H (1991) Ultramicroscopy 38:13CrossRefGoogle Scholar
  11. 11.
    Coene W, Jansen AJEM (1992) Scan Microsc Suppl 6:379Google Scholar
  12. 12.
    Rose H (1990) Optik 85:19Google Scholar
  13. 13.
    Haider M, Rose H, Uhlemann S, Schwan E, Kabius B, Urban K (1998) Nature 392:768CrossRefGoogle Scholar
  14. 14.
    Kujawa S, Freitag B, Hubert D (2005) Microsc Today 13(4):16CrossRefGoogle Scholar
  15. 15.
    Lentzen M, Jahnen B, Jia CL, Thust A, Tillmann K, Urban K (2002) Ultramicroscopy 92:233CrossRefGoogle Scholar
  16. 16.
    Coene WMJ, Janssen G, Op de Beeck M, van Dyck D (1992) Phys Rev Lett 69:3743CrossRefGoogle Scholar
  17. 17.
    Coene WMJ, Thust A, Op de Beeck M, van Dyck D (1996) Ultramicroscopy 64:109CrossRefGoogle Scholar
  18. 18.
    Thust A, Coene WMJ, Op de Beeck M, van Dyck D (1996) Ultramicroscopy 64:211CrossRefGoogle Scholar
  19. 19.
    Thust A, Overwijk MHF, Coene WMJ, Lentzen M (1996) Ultramicroscopy 64:249CrossRefGoogle Scholar
  20. 20.
    Thust A, Jia CL, Urban K (2002) In: Cross R (ed) Proceedings ICEM-15, vol 1. Microscopy Society of Southern Africa, Durban, pp 167–168Google Scholar
  21. 21.
    Williams DB, Carter CB (1996) Transmission electron microscopy. Plenum Press, New York (U.S.) and London (U.K.)CrossRefGoogle Scholar
  22. 22.
    Lentzen M (2004) Ultramicroscopy 99:211CrossRefGoogle Scholar
  23. 23.
    O’Keefe MA, Hetherington CJD, Wang YC, Nelson EC, Turner JH, Kisielowski C, Malm JO, Mueller R, Ringnalda J, Pan M, Thust A (2001) Ultramicroscopy 89:215CrossRefGoogle Scholar
  24. 24.
    Chang LY, Chen FR, Kirkland AI, Kai JJ (2003) J Electron Microsc 52:359CrossRefGoogle Scholar
  25. 25.
    Houben L, Thust A, Urban K (2006) Ultramicroscopy 106:200CrossRefGoogle Scholar
  26. 26.
    Uhlemann S, Haider M (1998) Ultramicroscopy 72:109CrossRefGoogle Scholar
  27. 27.
    Zemlin F, Weiss K, Schiske P, Kunath W, Herrmann KH (1978) Ultramicroscopy 3:49CrossRefGoogle Scholar
  28. 28.
    Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New York (U.S.)Google Scholar
  29. 29.
    Amelinckx S (1979) In: Nabarro FRN (ed) Dislocations in solids, vol 2. North-Holland, Amsterdam, pp 67–460Google Scholar
  30. 30.
    Nunes RW, Bennetto J, Vanderbilt D (1998) Phys Rev B 58:12563CrossRefGoogle Scholar
  31. 31.
    Justo JF, Nunes RW, Assali LVC (2002) J Phys: Condens Matter 14:12749Google Scholar
  32. 32.
    Beckman SP, Xu X, Specht P, Weber ER, Kisielowski C, Chrzan DC (2002) J Phys: Condens Matter 14:12673Google Scholar
  33. 33.
    Kolar HR, Spence JCH, Alexander H (1996) Phys Rev Lett 77:4031CrossRefGoogle Scholar
  34. 34.
    Xu X, Beckmann SP, Specht P, Weber ER, Chrzan DC, Ernie RP, Arslan I, Browning N, Bleloch A, Kisielowski C (2005) Phys Rev Lett 95:145501CrossRefGoogle Scholar
  35. 35.
    Hÿtch MJ, Snoeck E, Kilaas R (1998) Ultramicroscopy 74:131CrossRefGoogle Scholar
  36. 36.
    Gomez AM, Hirsch PB (1978) Phil Mag A 38:733CrossRefGoogle Scholar
  37. 37.
    Lomer WM (1951) Phil Mag 42:1327CrossRefGoogle Scholar
  38. 38.
    Hornstra J (1958) J Phys Chem Solids 5:129CrossRefGoogle Scholar
  39. 39.
    Bourret A, Dessaux J, Renault R (1982) Phil Mag A 45:1CrossRefGoogle Scholar
  40. 40.
    Vilà A, Cornet A, Morante JR, Ruterna P, Loubradou M, Bonnet R, González Y, González L (1995) Phil Mag A 75:85CrossRefGoogle Scholar
  41. 41.
    Lopatin S, Pennycook SJ, Narayan J, Duscher G (2002) Appl Phys Lett 81:2728CrossRefGoogle Scholar
  42. 42.
    Stirman JN, Crozier PA, Smith DJ, Phillipp F, Brill G, Sivananthan S (2004) Appl Phys Lett 84:2530CrossRefGoogle Scholar
  43. 43.
    Ohno H (1998) Science 281:951CrossRefGoogle Scholar
  44. 44.
    Kirchner V, Heinke H, Birkle U, Einfeld S, Selke D, Ryder PL (1998) Phys Rev B 58:15749CrossRefGoogle Scholar
  45. 45.
    Guzenko VA, Thillosen N, Dahmen A, Calarco R, Schäpers Th, Houben L, Luysberg M, Schineller B, Heuken M, Kaluza A (2004) J Appl Phys 96:5663CrossRefGoogle Scholar
  46. 46.
    Westwood WD, Waterhouse N, Wilcox PS (1975) Tantalum thin films. Academic Press, London (U.K.)Google Scholar
  47. 47.
    Hieber K, Mayer NM (1982) Thin Solid Films 90:43CrossRefGoogle Scholar
  48. 48.
    Read MH, Altman C (1965) Appl Phys Lett 7:51CrossRefGoogle Scholar
  49. 49.
    Moseley PT, Seabrook CJ (1973) Acta Cryst B29:1170CrossRefGoogle Scholar
  50. 50.
    Kwon KW, Lee HJ, Sinclair R (1999) Appl Phys Lett 75:935CrossRefGoogle Scholar
  51. 51.
    Laurila T, Zeng K, Kivilahti K, Molarius J, Suni I (2000) J Appl Phys 88:3377CrossRefGoogle Scholar
  52. 52.
    Hübner R, Hecker M, Mattern N, Hoffmann V, Wetzig K, Wenger C, Engelmann HJ, Wenzel C, Zschech E, Bartha JW (2003) Thin Solid Films 437:248CrossRefGoogle Scholar
  53. 53.
    Gupta D (1995) Mater Chem Phys 41:199CrossRefGoogle Scholar
  54. 54.
    Klaver P, Thijsse B (2002) Thin Solid Films 413:110CrossRefGoogle Scholar
  55. 55.
    Hÿtch MJ, Stobbs WM (1994) Ultramicroscopy 53:191CrossRefGoogle Scholar
  56. 56.
    Boothroyd CB (1998) J Microsc 190:99CrossRefGoogle Scholar
  57. 57.
    Venables JA, Spiller GDT, Hanbücken M (1984) Rep Prog Phys 47:399CrossRefGoogle Scholar
  58. 58.
    Abelmann L, Lodder C (1997) Thin Solid Films 305:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Karsten Tillmann
    • 1
    Email author
  • Lothar Houben
    • 1
  • Andreas Thust
    • 1
  • Knut Urban
    • 1
  1. 1.Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Institute of Solid State Research, Research Centre JülichJülichGermany

Personalised recommendations