Journal of Materials Science

, Volume 41, Issue 14, pp 4454–4465 | Cite as

Quantitative pressure and strain field analysis of helium precipitates in silicon

  • Norbert Hueging
  • Martina LuysbergEmail author
  • Helmut Trinkaus
  • Karsten Tillmann
  • Knut Urban


The structural properties of overpressurised helium precipitates formed by low dose ion implantation and subsequent annealing of silicon are investigated by quantitative transmission electron microscopy techniques. These precipitates, which show pronounced platelet geometry, are analysed with respect to their geometry, crystallographic orientation and their particular gas pressure values. The dependence of the measured platelet pressure versus the radius is discussed in terms of a Griffith crack. Experimental results on the shape and the crystallographic orientation of the platelets are discussed in the framework of anisotropic elastic properties and surface energies of silicon. The ability of the precipitates to punch-out dislocation loops is discussed in terms of associated threshold shear stress values and evaluated with regard to the defect size dependency.


Dislocation Loop Habit Plane Silicon Matrix Griffith Crack Fringe System 



The authors cordially thank Bernd Holländer and Siegfried Mantl for the fruitful cooperation during realisation of the implantation experiments, for guidance of the SRIM calculations as well as for helpful discussions.


  1. 1.
    Trinkaus H (1983) Rad Effects 78:189CrossRefGoogle Scholar
  2. 2.
    Donnelly SE (1985) Rad Effects 90:1CrossRefGoogle Scholar
  3. 3.
    van Veen A (1991) In: Donnelly SE and Evans JH (eds) Fundamental aspects of inert gases in solids, Plenum Press, New York, p 41Google Scholar
  4. 4.
    Holländer B, St. Lenk, Mantl S, Trinkaus H, Kirch D, Luysberg M, Herzog H-J, Hackbarth T, Fichtner PFP (2001) Nucl Instr Meth Phys Res B 175–177:357CrossRefGoogle Scholar
  5. 5.
    Fichtner PFP, Kaschny JR, Yankov RA, Mücklich A, Kreißig U, Skorupa W (1996) Appl Phys Lett 61:2656Google Scholar
  6. 6.
    Trinkaus H, Holländer B, St. Rongen, Mantl S, Herzog HJ, Kuchenbecker J, Hackbarth T. (2000) Appl Phys Lett 76:3552CrossRefGoogle Scholar
  7. 7.
    Herve AJ, Bruel M (2000) Int J High Speed Electronics Syst 10:131CrossRefGoogle Scholar
  8. 8.
    Luysberg M, Kirch D, Trinkaus H, Holländer B, St. Lenk, Mantl S, H.-Herzog J, Hackbarth T, Fichtner PFP (2002) J Appl Phys 92:4290CrossRefGoogle Scholar
  9. 9.
    Hartmann M, Trinkaus H (2002) Phys Rev Lett 88:055505CrossRefGoogle Scholar
  10. 10.
    Biersack JP, Haggmark L (1980) Nucl Instr Meth 174:257CrossRefGoogle Scholar
  11. 11.
    Cerofolini GF, Corni F, Frabboni S, Nobili C, Ottaviani G, Tonini R (2000) Mater Sci Eng Reports 27:1CrossRefGoogle Scholar
  12. 12.
    Fichtner PFP, Kaschny JR, Behar M, Yankov RA, Mücklich A, Skorupa W (1999) Nucl Inst Meth 148:329CrossRefGoogle Scholar
  13. 13.
    Oliviero E, Beafort MF, Barbot JF (2001) J Appl Phys 89:5332CrossRefGoogle Scholar
  14. 14.
    Ashby MF, Brown LM (1963) Phil Mag 8:1649CrossRefGoogle Scholar
  15. 15.
    Ashby MF, Brown LM (1963) Phil Mag 8:1083CrossRefGoogle Scholar
  16. 16.
    Raineri V, Saggio M (1997) Appl Phys Lett 71:1673CrossRefGoogle Scholar
  17. 17.
    Brusa RS, Karwasz GP, Tiengo N, Zecca A (2000) Phys Rev B61:10154CrossRefGoogle Scholar
  18. 18.
    Chen J, Jung P, Trinkaus H (2000) Phys Rev B61:12923CrossRefGoogle Scholar
  19. 19.
    Fichtner PFP, Kaschny JR, Kling A, Trinkaus H, Yankov RA, Mücklich A, Skorupa W, Zawislak FC, Amaral L, da Silva MF, Soares JC (1998) Nucl Inst and Meth B 136–138:460CrossRefGoogle Scholar
  20. 20.
    Hellwege K-H (eds) (1982) Landolt-Börnstein: numerical data and functional relationships in science and technology. New Series, Springer-Verlag, Berlin, p 17Google Scholar
  21. 21.
    Tillmann K, Hueging N, Trinkaus H, Luysberg M, Urban K (2004) Microsc Microanal 10:199CrossRefGoogle Scholar
  22. 22.
    Howie A, Whelan MJ (1961) Proc R Soc A163:217Google Scholar
  23. 23.
    Howie A, Whelan MJ (1962) Proc R Soc A267:217Google Scholar
  24. 24.
    Griffith A (1921) Trans R Soc A221:163CrossRefGoogle Scholar
  25. 25.
    Hirth JP, Lothe J (1968) Theory of dislocations. McGraw-Hill, New YorkGoogle Scholar
  26. 26.
    Hueging N, Luysberg M, Urban K, Buca D, Mantl S (2005) Appl Phys Lett 86:042112CrossRefGoogle Scholar
  27. 27.
    Eaglesham DJ, White AE, Feldman LC, Moriya N, Jacobson DC (1993) Rev Lett 70:1643CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Norbert Hueging
    • 1
    • 2
    • 3
  • Martina Luysberg
    • 1
    • 2
    • 3
    Email author
  • Helmut Trinkaus
    • 1
    • 3
  • Karsten Tillmann
    • 1
    • 3
  • Knut Urban
    • 1
    • 2
    • 3
  1. 1.Institute of Solid State Research Research Centre JülichJülichGermany
  2. 2.Ernst Ruska-Centre for Microscopy and Spectroscopy with ElectronsResearch Centre JülichJülichGermany
  3. 3.Center for Nanoelectronic Systems for Information TechnologyResearch Centre JülichJülichGermany

Personalised recommendations