Journal of Materials Science

, Volume 41, Issue 14, pp 4405–4412 | Cite as

Interfacial structure in silicon nitride sintered with lanthanide oxide

  • C. DwyerEmail author
  • A. Ziegler
  • N. Shibata
  • G. B. Winkelman
  • R. L. Satet
  • M. J. Hoffmann
  • M. K. Cinibulk
  • P. F. Becher
  • G. S. Painter
  • N. D. Browning
  • D. J. H. Cockayne
  • R. O. Ritchie
  • S. J. Pennycook


Three independent research groups present a comparison of their structural analyses of prismatic interfaces in silicon nitride densified with the aid of lanthanide oxide Ln2O3. All three groups obtained scanning transmission electron microscope images which clearly reveal the presence of well-defined Ln segregation sites at the interfaces, and, moreover, reveal that these segregation sites are element-specific. While some results differ across the three research groups, the vast majority exhibits good reproducibility.


Silicon Nitride Scanning Transmission Electron Microscope Lawrence Berkeley National Laboratory Si3N4 Ceramic Silicon Column 



The group at the University of Oxford acknowledges financial support from the European Community Growth Program under the NANOAM project (Contract No. GRD2-200-3030351) in collaboration with the NSF Award (DMR-0010062). Thanks are also due to I. Tanaka for supplying the undoped silicon nitride sample, and R. M. Cannon for many useful suggestions and stimulating discussions. The group at Lawrence Berkeley National Laboratory acknowledges the financial support by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. Department of Energy Department of Energy under Contract No. DE-AC03-76SF00098, DE-AC02-05CH11231 and FG02-03ER-46057. We also would like to thank Dr. R. M. Cannon for helpful discussions. ORNL participants PFB, GSP and SJP acknowledge financial support by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract DE-AC05-00OR22725 with UT-Battelle, LLC.


  1. 1.
    Wiederhorn SM (1984) Ann Rev Mater Sci 14:373CrossRefGoogle Scholar
  2. 2.
    Ritchie RO (1988) Mater Sci Eng A 103:15CrossRefGoogle Scholar
  3. 3.
    Becher PF (1991) J Am Ceram Soc 74:255CrossRefGoogle Scholar
  4. 4.
    Clarke DR (1994) In: Hoffmann MJ, Petzow G (eds) Tailoring of mechanical properties of Si3N4 ceramics, NATO ASI Series. Kluwer Academic Publishers, p 291Google Scholar
  5. 5.
    Lawn BR (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, pp Ch 8Google Scholar
  6. 6.
    Swanson PL, Fairbanks CJ, Lawn BR, Mai Y-W, Hockey BJ (1987) J Am Ceram Soc 70:279CrossRefGoogle Scholar
  7. 7.
    Mai Y-W, Lawn BR (1987) J Am Ceram Soc 70:289CrossRefGoogle Scholar
  8. 8.
    Rödel J, Kelly JF, Lawn BR (1990) J Am Ceram Soc 73:3313CrossRefGoogle Scholar
  9. 9.
    Maniette Y, Inagaki M, Sakai M (1991) J Euro Ceram Soc 7:255CrossRefGoogle Scholar
  10. 10.
    Bennison SJ, Lawn BR (1989) Acta Metall Mater 37:2659CrossRefGoogle Scholar
  11. 11.
    Li C-W, Yamanis J (1989) Ceram Eng Sci Proc 10:632CrossRefGoogle Scholar
  12. 12.
    Li C-W, Lee D-J, Lui S-C (1992) J Am Ceram Soc 75:1777CrossRefGoogle Scholar
  13. 13.
    Vekinis G, Ashby MF, Beaumont WR (1990) Acta Metall Mater 38:1151CrossRefGoogle Scholar
  14. 14.
    Reichl A, Steinbrech RW (1988) J Am Ceram Soc 71:C299CrossRefGoogle Scholar
  15. 15.
    Becher PF (1991) In: Shah SP (ed) Toughening mechanisms in quasi-brittle materials. Kluwer Academic Publishers, p 19Google Scholar
  16. 16.
    Kawashima T, Okamoto H, Yamamoto H, Kitamura A (1991) J Ceram Soc Japan 99:320CrossRefGoogle Scholar
  17. 17.
    Dauskardt RH (1993) Acta Metall Mater 41:2765CrossRefGoogle Scholar
  18. 18.
    Sajgalik P, Susza J, Hoffmann MJ (1995) J Am Ceram Soc 78:2619CrossRefGoogle Scholar
  19. 19.
    Hoffmann MJ, Petzow G (1993) Mater Res Soc Symp Proc 287:3CrossRefGoogle Scholar
  20. 20.
    Petzow G, Herrmann M (2002) In: Jansen M, Mingos DMP (eds) High performance non-oxide ceramics II. Springer-Verlag, BerlinGoogle Scholar
  21. 21.
    Sun EY, Becher PF, Hsueh C-H, Painter GS, SB Waters S-L Hwang, Hoffmann MJ (1999) Acta Mater 47:2777CrossRefGoogle Scholar
  22. 22.
    Shibata N, Pennycook SJ, Gosnell TR, Painter GS, Shelton WA, Becher PF (2004) Nature 428:730CrossRefGoogle Scholar
  23. 23.
    Ziegler A, Idrobo JC, Cinibulk MK, Kisielowski C, Browning ND, Ritchie RO (2004) Science 306:1768CrossRefGoogle Scholar
  24. 24.
    Winkelman GB, Dwyer C, Hudson TS, Nguyen-Manh D, Döblinger M, Satet RL, Hoffmann MJ, Cockayne DJH (2004) Phil Mag Lett 84:755CrossRefGoogle Scholar
  25. 25.
    Winkelman GB, Dwyer C, Hudson TS, Nguyen-Manh D, Döblinger M, Satet RL, Hoffmann MJ, Cockayne DJH (2005) Appl Phys Lett 87:061911CrossRefGoogle Scholar
  26. 26.
    Shibata N, Painter GS, Satet RL, Hoffmann MJ, Pennycook SJ, Becher PF (2005) Phys Rev B 72:140101CrossRefGoogle Scholar
  27. 27.
    Satet RL, Hoffmann MJ (2005) J Am Ceram Soc 88:2485CrossRefGoogle Scholar
  28. 28.
    Satet RL, Hoffmann MJ (2004) J Euro Ceram Soc 24:3437CrossRefGoogle Scholar
  29. 29.
    Hoffmann MJ, Gu H, Cannon RM (2000) In: Carter CB, Hall EL, Briant CL, Nutt S (eds) Mater Res Soc Symp Proc 586:65Google Scholar
  30. 30.
    Painter GS, Becher PF, Shelton WA, Satet RL, Hoffmann MJ (2004) Phys Rev B 70:144108CrossRefGoogle Scholar
  31. 31.
    Hoffmann MJ, Geyer A, Oberacker R (1999) J Eur Ceram Soc 19:2359CrossRefGoogle Scholar
  32. 32.
    Hudson TS, Nguyen-Manh D, van Duin ACT, Sutton AP (2006) Mater Sci Eng A (in press)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • C. Dwyer
    • 1
    Email author
  • A. Ziegler
    • 2
  • N. Shibata
    • 3
  • G. B. Winkelman
    • 1
  • R. L. Satet
    • 4
  • M. J. Hoffmann
    • 4
  • M. K. Cinibulk
    • 5
  • P. F. Becher
    • 6
  • G. S. Painter
    • 6
  • N. D. Browning
    • 2
    • 7
  • D. J. H. Cockayne
    • 1
  • R. O. Ritchie
    • 2
    • 8
  • S. J. Pennycook
    • 9
  1. 1.Department of MaterialsUniversity of OxfordOxfordUK
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Institute for Engineering InnovationUniversity of TokyoYayoiJapan
  4. 4.Institut für Keramik im MaschinenbauUniversität KarlsruheKarlsruheGermany
  5. 5.Materials and Manufacturing DirectorateAir Force Research LaboratoryWright-Patterson Air Force BaseUSA
  6. 6.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA
  7. 7.Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavisUSA
  8. 8.Department of Materials Science and EngineeringUniversity of California BerkeleyBerkeleyUSA
  9. 9.Condensed Matter Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations