Advertisement

Journal of Materials Science

, Volume 41, Issue 14, pp 4413–4419 | Cite as

Aberration-corrected HRTEM of defects in strained La2CuO4 thin films grown on SrTiO3

  • Lothar HoubenEmail author
Article

Abstract

The structure of lattice defects in thin La2CuO4 films grown under tensile strain on SrTiO3 (001) is investigated by the combination of state-of-the-art medium voltage aberration-corrected transmission electron microscopy together with numerical exit-plane wavefunction reconstruction. The interfacial reconstruction, the coordination in planar shear defects evolving from surface steps and misfit dislocations of the ba[010] type are atomically resolved and analysed. Quantitative mapping and evaluation of peak data related to cation atom columns reveal the formation of a perovskite-like layer of lanthanum copper oxide analogous to the thermodynamically instable LaCuO3−δ phase and a distortion in the octahedral coordination of copper at the interface to the substrate. The planar shear defects embody extra sites for cations and oxygen in a three-dimensional periodic arrangement which are partially filled and provide paths for vacancy hopping transport. The central structure of the misfit dislocation does not exhibit mirror symmetry around a plane containing the dislocation line owing to the asymmetric arrangement of cation columns.

Keywords

Misfit Dislocation La2CuO4 Shear Defect La214 Phase Electronic Reconstruction 

Notes

Acknowledgements

The author is grateful to Ulrich Poppe for the preparation of the La214 thin films and for invaluable comments and discussions.

References

  1. 1.
    Pickett WE (1989) Rev Mod Phys 61:433CrossRefGoogle Scholar
  2. 2.
    Goodenough JB (2004) Rep Prog Phys 67:1915CrossRefGoogle Scholar
  3. 3.
    Jorgensen JD, Dabrowski B, Pei S, Hinks DG, Soderholm L, Morosin B, Schirber JE, Venturi EL, Ginley DS (1988) Phys Rev B 38:11337CrossRefGoogle Scholar
  4. 4.
    Okamoto S, Millis AJ (2004) Nature 428:630CrossRefGoogle Scholar
  5. 5.
    Haider M, Rose H, Uhlemann S, Schwan E, Kabius B, Urban K (1998) Nature 392:768CrossRefGoogle Scholar
  6. 6.
    Lentzen M, Jahnen B, Jia CL, Tillmann K, Urban K (2002) Ultramicroscopy 92:233CrossRefGoogle Scholar
  7. 7.
    Jia CL, Lentzen M, Urban K (2003) Science 299:870CrossRefGoogle Scholar
  8. 8.
    Uhlemann S, Haider M (1998) Ultramicroscopy 72:109CrossRefGoogle Scholar
  9. 9.
    Coene W, Thust A, Op de Beeck M, Van Dyck D (1996) Ultramicroscopy 64:109CrossRefGoogle Scholar
  10. 10.
    Thust A, Coene W, Op de Beeck M, Van Dyck D (1996) Ultramicroscopy 64:211CrossRefGoogle Scholar
  11. 11.
    Jia CL, Thust A (1999) Phys Rev Lett 82:5052CrossRefGoogle Scholar
  12. 12.
    Kisielowski C, Hetherington CJD, Wang YC, Kilaas R, O’Keefe MA, Thust A (2001) Ultramicroscopy 89:243CrossRefGoogle Scholar
  13. 13.
    den Dekker AJ, van Aert S, van den Bos A, van Dyck D (2005) Ultramicroscopy 104:83CrossRefGoogle Scholar
  14. 14.
    Houben L, Thust A, Urban K (2006) Ultramicroscopy 106:200CrossRefGoogle Scholar
  15. 15.
    Stadelmann PA (1987) Ultramicroscopy 21:131CrossRefGoogle Scholar
  16. 16.
    Alimoussa A, Casanove M-J, Hutchison JL (1997) Phil Mag A 76:907CrossRefGoogle Scholar
  17. 17.
    Ohtomoto A, Muller DA, Grazul JL, Hwang HY (2002) Nature 419:378CrossRefGoogle Scholar
  18. 18.
    Bringley JF (1993) Phys Rev B 47:15269CrossRefGoogle Scholar
  19. 19.
    Galy J (1992) Acta Cryst B 48:777CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Ernst Ruska-Centre for Microscopy and Spectroscopy with ElectronsInstitute of Solid State ResearchJülichGermany

Personalised recommendations