Journal of Materials Science

, Volume 41, Issue 17, pp 5797–5801 | Cite as

Sn–Sb–Se crystalline phases formed by melt-quenching technique

  • A. B. AdamEmail author
  • S. Sakrani
  • Y. Wahab

Alloy percentages of Sn–Sb–Se (TAS) over a wide range of compositions were prepared, in specially designed shaking-furnace and melt-sealing evacuated quartz ampoule using the melt-quenching technique from 700 °C into liquid nitrogen. The characterization properties include structural, chemical compositions and surface morphology were obtained. XRD measurement was carried out to identify whether the as-prepared samples were amorphous or crystalline structure and to determine the boundary between the two states. It showed that Sn was incorporated in the ternary systems and formed crystal structure beyond 12.5-mol%. However, crystalline phases such as Sn2Sb4Se8 and Sb2Se3were mostly counted and dominant in crystalline structure samples with Sn-mol% more than 12.5. EDX was proved that the samples preserve their theoretical compositions and there was no excessive loss of either chalcogen or the additives. SEM morphological studies revealed that increasing Sn and Sb mole % modify the...


Crystalline Phase SnSe2 Chalcogen Sb2Se3 Ternary Composition 



The corresponded author was grateful to University of Kordofan, Sudan and University of Technology, Malaysia for their financial support.


  1. 1.
    Elliott SR (1991) In: Zarzychi JW (ed) Glasses and amorphous materials, vol 9. New York, VCHGoogle Scholar
  2. 2.
    Hilton AR, Jones CE, Brau M (1966a) Phys Chem Glasses 7(4):105Google Scholar
  3. 3.
    Chelikowsky JR, Philips JC (1978) Phys Rev B 17(6):2453CrossRefGoogle Scholar
  4. 4.
    Zhenhua L (1991) J. Non-Cryst Solids 127:298CrossRefGoogle Scholar
  5. 5.
    Fouad SS, Fayek SA, Ali MH (1998) Vacuum 49:25CrossRefGoogle Scholar
  6. 6.
    Philips JC (1979) J Non-Cryst Solids 34:153CrossRefGoogle Scholar
  7. 7.
    Lezal D (2003) J Optoelectron Adva Mater 5(1):23Google Scholar
  8. 8.
    Elliott SR (1990) Physics of amorphous materials. Longman Scientific & Technical Press, New YorkGoogle Scholar
  9. 9.
    Adam AB, Sakrani S, Wahab Y (2005) J Mat Sci 40(7):1571CrossRefGoogle Scholar
  10. 10.
    Adam AB (2002) PhD-Thesis. University of Technology, MalaysiaGoogle Scholar
  11. 11.
    Adam AB, Sakrani S, Wahab Y (2004) Physical Characterizations of Snx–Sb15–Se85-x Chalcogenide Glasses. Paper submitted on Dec.7, 2004, to be published in Journal of Materials ScienceGoogle Scholar
  12. 12.
    Adam AB, Sakrani S, Wahab Y (2002) J. Solid State Sci Tech 10(1&2):139Google Scholar
  13. 13.
    Wahab Y, Adam AB, Sakrani S (2002) J Solid State Sci Tech 10(1&2):60Google Scholar
  14. 14.
    Adam AB, Sakrani S, Wahab Y (2000) J. Solid State Sci Tech 8(1&2):42Google Scholar
  15. 15.
    Adam AB, Sakrani S, Wahab Y (1998) J Solid State Sci Tech 6(1):78Google Scholar
  16. 16.
    Sakrani S, Adam AB, Wahab Y (1997) J Solid State Sci Tech 5(1):1Google Scholar
  17. 17.
    Das GC, Platakis NS, Bever MB (1974) J Non-Cryst Solids 15:30CrossRefGoogle Scholar
  18. 18.
    Agnihotri AK, Kumar A, Nigam A (1988) J Non-Cryst Solids 101:127CrossRefGoogle Scholar
  19. 19.
    Kakinuma F, Fukunaga T, Misawa M, Susuki K (1992) J Non-Cryst Solids 150:53CrossRefGoogle Scholar
  20. 20.
    Mukherjee AK, Dhawan U, Kundra KD, Mondal M, Ali SZ (1982) Indian J Pure Appl Phys 20:681Google Scholar
  21. 21.
    Sreeram AN, Swiler DR, Varshneya AK (1991) J Non-Cryst Solids 127:287CrossRefGoogle Scholar
  22. 22.
    Kislitskaya EA, Kokorina VF (1971) Translated from Zhurnal Prikladnoi Khimii 44(3):646Google Scholar
  23. 23.
    McNeil LE, Mikrut JM, Peters MJ (1987) Solid State Commun 62(2):101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringUniversiti Teknologi PETRONASTronoh, PerakMalaysia
  2. 2.Physics Department Faculty of ScienceUniversity Teknologi MalaysiaSkudai, JohorMalaysia

Personalised recommendations