Advertisement

Journal of Materials Science

, Volume 41, Issue 15, pp 4981–4984 | Cite as

Effective halogen-free flame retardants for carbon fibre-reinforced epoxy composites

  • R. M. Perez
  • J. K. W. Sandler
  • V. Altstädt
  • T. Hoffmann
  • D. Pospiech
  • M. Ciesielski
  • M. Döring
  • U. Braun
  • U. Knoll
  • B. Schartel
Letter

The flammability and fire behaviour of fibre-reinforced epoxy composites has drawn increasing attention worldwide since the fire performance of such parts for transport applications especially is critical and is facing increasingly severe environmental legislation. Much progress has been made in improving the thermostability and flame retardancy of neat epoxy resins using a variety of compounds [1]. In particular, halogen-free compounds such as the 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) successfully increase the flame retardancy of epoxy resins [2, 3, 4, 5, 6, 7] while avoiding many disadvantages such as poor compatibility, migration of the compound, and release of toxic gases upon burning as compared to other common compounds. Using such DOPO-based compounds, the flame retardancy of neat epoxies can be improved at phosphorus contents as low as 3 wt% [4, 7], thereby limiting processing difficulties and the often severe degradation of the resulting physical and...

Keywords

Flame Retardancy Heat Release Rate Flame Spread Strain Energy Release Total Heat Release 

References

  1. 1.
    Lu SY, Hamerton I (2002) Prog Polym Sci 27:1661CrossRefGoogle Scholar
  2. 2.
    Shieh JY, Wang CS (2002) J Polym Sci: Part A: Polym Chem 40:369CrossRefGoogle Scholar
  3. 3.
    Lin CH, Wang CS, (2001) Polymer 42:1869CrossRefGoogle Scholar
  4. 4.
    Hussain M, Varley RJ, Mathus M, Burchill P, Simon GP (2003) J Mater Sci Lett 22:455CrossRefGoogle Scholar
  5. 5.
    Shieh JY, Wang CS (2001) Polymer 42:7617CrossRefGoogle Scholar
  6. 6.
    Wang CS, Lin CH (1999) J Polym Sci: Part A: Polym Chem 37:3903CrossRefGoogle Scholar
  7. 7.
    Perez RM, Sandler JKW, Altstädt V, Hoffmann T, Pospiech D, Ciesielski M, Döring M (2006) J Mat Sci (in press)Google Scholar
  8. 8.
    Gibson AG (2001) In: Proceedings of the 2nd International Conference on Composites in Fire-2001, Centre for Composite Materials Engineering, University of Newcastle, UK, pp 1–20Google Scholar
  9. 9.
    Stevanovic D, Jar P-YB, Kalyanasundaram S, Lowe A (2000) Comp Sci Tech 60:1879CrossRefGoogle Scholar
  10. 10.
    Chou I, Kimpara I, Kageyama K, Ohsawa I (1995) In: Composite Materials: Fatigue and Fracture—Fifth Volume, American Society for Testing and Materials, Philadelphia, 1995, p 132Google Scholar
  11. 11.
    Schartel B, Braun U (2003) e-Polymers 13Google Scholar
  12. 12.
    Schartel B, Kunze R Neubert D, (2002) J Appl Polym Sci 83:2060CrossRefGoogle Scholar
  13. 13.
    Braun U, Schartel B (2004) Macromol Chem Phys 205:2185CrossRefGoogle Scholar
  14. 14.
    Braun U, Schartel B (2005) J Fire Sci 23:5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • R. M. Perez
    • 1
  • J. K. W. Sandler
    • 1
  • V. Altstädt
    • 1
  • T. Hoffmann
    • 2
  • D. Pospiech
    • 2
  • M. Ciesielski
    • 3
  • M. Döring
    • 3
  • U. Braun
    • 4
  • U. Knoll
    • 4
  • B. Schartel
    • 4
  1. 1.Polymer EngineeringUniversity of BayreuthBayreuthGermany
  2. 2.Faculty of Macromolecular Chemistry, Department of Polymer StructuresLeibniz-Institute of Polymer Research DresdenDresdenGermany
  3. 3.Institute of Technical ChemistryResearch Center Karlsruhe GmbHKarlsruheGermany
  4. 4.Federal Institute for Materials Research and TestingBerlinGermany

Personalised recommendations